diff --git a/build/doctrees/ammico.doctree b/build/doctrees/ammico.doctree
index f566066..64812e5 100644
Binary files a/build/doctrees/ammico.doctree and b/build/doctrees/ammico.doctree differ
diff --git a/build/doctrees/environment.pickle b/build/doctrees/environment.pickle
index f7f121a..81013a1 100644
Binary files a/build/doctrees/environment.pickle and b/build/doctrees/environment.pickle differ
diff --git a/build/doctrees/notebooks/DemoNotebook_ammico.doctree b/build/doctrees/notebooks/DemoNotebook_ammico.doctree
index ca81a04..c571703 100644
Binary files a/build/doctrees/notebooks/DemoNotebook_ammico.doctree and b/build/doctrees/notebooks/DemoNotebook_ammico.doctree differ
diff --git a/build/html/.buildinfo b/build/html/.buildinfo
index f845f4b..6c4497c 100644
--- a/build/html/.buildinfo
+++ b/build/html/.buildinfo
@@ -1,4 +1,4 @@
 # Sphinx build info version 1
 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 5899cb50f8b06cc7e4e6fc49fb2f9600
+config: e9b6de766ccb900ad5baf44d5b42ad4a
 tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/build/html/_static/basic.css b/build/html/_static/basic.css
index 30fee9d..f316efc 100644
--- a/build/html/_static/basic.css
+++ b/build/html/_static/basic.css
@@ -4,7 +4,7 @@
  *
  * Sphinx stylesheet -- basic theme.
  *
- * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
  * :license: BSD, see LICENSE for details.
  *
  */
diff --git a/build/html/_static/doctools.js b/build/html/_static/doctools.js
index d06a71d..4d67807 100644
--- a/build/html/_static/doctools.js
+++ b/build/html/_static/doctools.js
@@ -4,7 +4,7 @@
  *
  * Base JavaScript utilities for all Sphinx HTML documentation.
  *
- * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
  * :license: BSD, see LICENSE for details.
  *
  */
diff --git a/build/html/_static/language_data.js b/build/html/_static/language_data.js
index 250f566..367b8ed 100644
--- a/build/html/_static/language_data.js
+++ b/build/html/_static/language_data.js
@@ -5,7 +5,7 @@
  * This script contains the language-specific data used by searchtools.js,
  * namely the list of stopwords, stemmer, scorer and splitter.
  *
- * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
  * :license: BSD, see LICENSE for details.
  *
  */
@@ -13,7 +13,7 @@
 var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"];
 
 
-/* Non-minified version is copied as a separate JS file, is available */
+/* Non-minified version is copied as a separate JS file, if available */
 
 /**
  * Porter Stemmer
diff --git a/build/html/_static/searchtools.js b/build/html/_static/searchtools.js
index 7918c3f..92da3f8 100644
--- a/build/html/_static/searchtools.js
+++ b/build/html/_static/searchtools.js
@@ -4,7 +4,7 @@
  *
  * Sphinx JavaScript utilities for the full-text search.
  *
- * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
  * :license: BSD, see LICENSE for details.
  *
  */
@@ -99,7 +99,7 @@ const _displayItem = (item, searchTerms, highlightTerms) => {
       .then((data) => {
         if (data)
           listItem.appendChild(
-            Search.makeSearchSummary(data, searchTerms)
+            Search.makeSearchSummary(data, searchTerms, anchor)
           );
         // highlight search terms in the summary
         if (SPHINX_HIGHLIGHT_ENABLED)  // set in sphinx_highlight.js
@@ -116,8 +116,8 @@ const _finishSearch = (resultCount) => {
     );
   else
     Search.status.innerText = _(
-      `Search finished, found ${resultCount} page(s) matching the search query.`
-    );
+      "Search finished, found ${resultCount} page(s) matching the search query."
+    ).replace('${resultCount}', resultCount);
 };
 const _displayNextItem = (
   results,
@@ -137,6 +137,22 @@ const _displayNextItem = (
   // search finished, update title and status message
   else _finishSearch(resultCount);
 };
+// Helper function used by query() to order search results.
+// Each input is an array of [docname, title, anchor, descr, score, filename].
+// Order the results by score (in opposite order of appearance, since the
+// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically.
+const _orderResultsByScoreThenName = (a, b) => {
+  const leftScore = a[4];
+  const rightScore = b[4];
+  if (leftScore === rightScore) {
+    // same score: sort alphabetically
+    const leftTitle = a[1].toLowerCase();
+    const rightTitle = b[1].toLowerCase();
+    if (leftTitle === rightTitle) return 0;
+    return leftTitle > rightTitle ? -1 : 1; // inverted is intentional
+  }
+  return leftScore > rightScore ? 1 : -1;
+};
 
 /**
  * Default splitQuery function. Can be overridden in ``sphinx.search`` with a
@@ -160,13 +176,26 @@ const Search = {
   _queued_query: null,
   _pulse_status: -1,
 
-  htmlToText: (htmlString) => {
+  htmlToText: (htmlString, anchor) => {
     const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html');
-    htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() });
+    for (const removalQuery of [".headerlinks", "script", "style"]) {
+      htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() });
+    }
+    if (anchor) {
+      const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`);
+      if (anchorContent) return anchorContent.textContent;
+
+      console.warn(
+        `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.`
+      );
+    }
+
+    // if anchor not specified or not found, fall back to main content
     const docContent = htmlElement.querySelector('[role="main"]');
-    if (docContent !== undefined) return docContent.textContent;
+    if (docContent) return docContent.textContent;
+
     console.warn(
-      "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template."
+      "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template."
     );
     return "";
   },
@@ -239,16 +268,7 @@ const Search = {
     else Search.deferQuery(query);
   },
 
-  /**
-   * execute search (requires search index to be loaded)
-   */
-  query: (query) => {
-    const filenames = Search._index.filenames;
-    const docNames = Search._index.docnames;
-    const titles = Search._index.titles;
-    const allTitles = Search._index.alltitles;
-    const indexEntries = Search._index.indexentries;
-
+  _parseQuery: (query) => {
     // stem the search terms and add them to the correct list
     const stemmer = new Stemmer();
     const searchTerms = new Set();
@@ -284,16 +304,32 @@ const Search = {
     // console.info("required: ", [...searchTerms]);
     // console.info("excluded: ", [...excludedTerms]);
 
-    // array of [docname, title, anchor, descr, score, filename]
-    let results = [];
+    return [query, searchTerms, excludedTerms, highlightTerms, objectTerms];
+  },
+
+  /**
+   * execute search (requires search index to be loaded)
+   */
+  _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => {
+    const filenames = Search._index.filenames;
+    const docNames = Search._index.docnames;
+    const titles = Search._index.titles;
+    const allTitles = Search._index.alltitles;
+    const indexEntries = Search._index.indexentries;
+
+    // Collect multiple result groups to be sorted separately and then ordered.
+    // Each is an array of [docname, title, anchor, descr, score, filename].
+    const normalResults = [];
+    const nonMainIndexResults = [];
+
     _removeChildren(document.getElementById("search-progress"));
 
-    const queryLower = query.toLowerCase();
+    const queryLower = query.toLowerCase().trim();
     for (const [title, foundTitles] of Object.entries(allTitles)) {
-      if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) {
+      if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) {
         for (const [file, id] of foundTitles) {
           let score = Math.round(100 * queryLower.length / title.length)
-          results.push([
+          normalResults.push([
             docNames[file],
             titles[file] !== title ? `${titles[file]} > ${title}` : title,
             id !== null ? "#" + id : "",
@@ -308,46 +344,47 @@ const Search = {
     // search for explicit entries in index directives
     for (const [entry, foundEntries] of Object.entries(indexEntries)) {
       if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) {
-        for (const [file, id] of foundEntries) {
-          let score = Math.round(100 * queryLower.length / entry.length)
-          results.push([
+        for (const [file, id, isMain] of foundEntries) {
+          const score = Math.round(100 * queryLower.length / entry.length);
+          const result = [
             docNames[file],
             titles[file],
             id ? "#" + id : "",
             null,
             score,
             filenames[file],
-          ]);
+          ];
+          if (isMain) {
+            normalResults.push(result);
+          } else {
+            nonMainIndexResults.push(result);
+          }
         }
       }
     }
 
     // lookup as object
     objectTerms.forEach((term) =>
-      results.push(...Search.performObjectSearch(term, objectTerms))
+      normalResults.push(...Search.performObjectSearch(term, objectTerms))
     );
 
     // lookup as search terms in fulltext
-    results.push(...Search.performTermsSearch(searchTerms, excludedTerms));
+    normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms));
 
     // let the scorer override scores with a custom scoring function
-    if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item)));
+    if (Scorer.score) {
+      normalResults.forEach((item) => (item[4] = Scorer.score(item)));
+      nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item)));
+    }
 
-    // now sort the results by score (in opposite order of appearance, since the
-    // display function below uses pop() to retrieve items) and then
-    // alphabetically
-    results.sort((a, b) => {
-      const leftScore = a[4];
-      const rightScore = b[4];
-      if (leftScore === rightScore) {
-        // same score: sort alphabetically
-        const leftTitle = a[1].toLowerCase();
-        const rightTitle = b[1].toLowerCase();
-        if (leftTitle === rightTitle) return 0;
-        return leftTitle > rightTitle ? -1 : 1; // inverted is intentional
-      }
-      return leftScore > rightScore ? 1 : -1;
-    });
+    // Sort each group of results by score and then alphabetically by name.
+    normalResults.sort(_orderResultsByScoreThenName);
+    nonMainIndexResults.sort(_orderResultsByScoreThenName);
+
+    // Combine the result groups in (reverse) order.
+    // Non-main index entries are typically arbitrary cross-references,
+    // so display them after other results.
+    let results = [...nonMainIndexResults, ...normalResults];
 
     // remove duplicate search results
     // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept
@@ -361,7 +398,12 @@ const Search = {
       return acc;
     }, []);
 
-    results = results.reverse();
+    return results.reverse();
+  },
+
+  query: (query) => {
+    const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query);
+    const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms);
 
     // for debugging
     //Search.lastresults = results.slice();  // a copy
@@ -466,14 +508,18 @@ const Search = {
       // add support for partial matches
       if (word.length > 2) {
         const escapedWord = _escapeRegExp(word);
-        Object.keys(terms).forEach((term) => {
-          if (term.match(escapedWord) && !terms[word])
-            arr.push({ files: terms[term], score: Scorer.partialTerm });
-        });
-        Object.keys(titleTerms).forEach((term) => {
-          if (term.match(escapedWord) && !titleTerms[word])
-            arr.push({ files: titleTerms[word], score: Scorer.partialTitle });
-        });
+        if (!terms.hasOwnProperty(word)) {
+          Object.keys(terms).forEach((term) => {
+            if (term.match(escapedWord))
+              arr.push({ files: terms[term], score: Scorer.partialTerm });
+          });
+        }
+        if (!titleTerms.hasOwnProperty(word)) {
+          Object.keys(titleTerms).forEach((term) => {
+            if (term.match(escapedWord))
+              arr.push({ files: titleTerms[term], score: Scorer.partialTitle });
+          });
+        }
       }
 
       // no match but word was a required one
@@ -496,9 +542,8 @@ const Search = {
 
       // create the mapping
       files.forEach((file) => {
-        if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1)
-          fileMap.get(file).push(word);
-        else fileMap.set(file, [word]);
+        if (!fileMap.has(file)) fileMap.set(file, [word]);
+        else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word);
       });
     });
 
@@ -549,8 +594,8 @@ const Search = {
    * search summary for a given text. keywords is a list
    * of stemmed words.
    */
-  makeSearchSummary: (htmlText, keywords) => {
-    const text = Search.htmlToText(htmlText);
+  makeSearchSummary: (htmlText, keywords, anchor) => {
+    const text = Search.htmlToText(htmlText, anchor);
     if (text === "") return null;
 
     const textLower = text.toLowerCase();
diff --git a/build/html/ammico.html b/build/html/ammico.html
index 95ce728..f82b749 100644
--- a/build/html/ammico.html
+++ b/build/html/ammico.html
@@ -16,7 +16,7 @@
         
         
         
-        
+        
         
         
     
@@ -63,6 +63,10 @@
 
PostprocessText.get_text_dict() TextAnalyzer TextDetector 
 TextDetector.analyse_image() TextDetector.clean_text() 
+
+class   text. TextAnalyzer ( csv_path :   str column_key :   str   |   None   =   None )  
+Bases: object 
+Used to get text from a csv and then run the TextDetector on it.
+
+
+read_csv ( )  →  dict  
+Read the CSV file and return the dictionary with the text entries.
+
+Returns:  
+dict  – The dictionary with the text entries.
+ 
+ 
+
+ 
+
 
 
 class   text. TextDetector ( subdict :   dict analyse_text :   bool   =   False model_names :   list   |   None   =   None revision_numbers :   list   |   None   =   None )  
@@ -1056,7 +1078,7 @@
 
 
 
-read_img ( filepath :   str )  →  <module  'PIL.Image'  from  '/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/PIL/Image.py'>  
+read_img ( filepath :   str )  →  <module  'PIL.Image'  from  '/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/PIL/Image.py'> Load Image from filepath.
 
 Parameters:  
@@ -1070,7 +1092,7 @@
 
 
 
-resize_img ( raw_img:  <module  'PIL.Image'  from  '/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/PIL/Image.py'> )  
+resize_img ( raw_img:  <module  'PIL.Image'  from  '/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/PIL/Image.py'> ) 
 Proportional resize image to 240 p width.
 
 Parameters:  
diff --git a/build/html/create_API_key_link.html b/build/html/create_API_key_link.html
index 6718810..7eccf2a 100644
--- a/build/html/create_API_key_link.html
+++ b/build/html/create_API_key_link.html
@@ -16,7 +16,7 @@
         
         
         
-        
+        
         
         
     
diff --git a/build/html/genindex.html b/build/html/genindex.html
index 2d701c2..0fd54ad 100644
--- a/build/html/genindex.html
+++ b/build/html/genindex.html
@@ -15,7 +15,7 @@
         
         
         
-        
+        
         
         
     
@@ -420,12 +420,14 @@
       read_and_process_images_itm() (multimodal_search.MultimodalSearch method) 
 read_img() (multimodal_search.MultimodalSearch method) 
+      read_csv() (text.TextAnalyzer method) 
 remove_linebreaks() (text.TextDetector method) 
+      read_img() (multimodal_search.MultimodalSearch method) 
 
       text_ner() (text.TextDetector method) 
  
-  
       text_summary() (text.TextDetector method) 
+TextAnalyzer (class in text) 
 TextDetector (class in text) 
 PostprocessText.get_text_dict()  
 
+TextAnalyzer TextDetector 
 TextDetector.analyse_image() TextDetector.clean_text() 
 The detector modules 
 The different detector modules with their options are explained in more detail in this section. ## Text detector Text on the images can be extracted using the TextDetector text 
-
+
 The user can set if the text should be further summarized, and analyzed for sentiment and named entity recognition, by setting the keyword analyse_text True False model_names model_names=["sshleifer/distilbart-cnn-12-6",  "distilbert-base-uncased-finetuned-sst-2-english",  "dbmdz/bert-large-cased-finetuned-conll03-english"] revision_numbers revision_numbers=["a4f8f3e",  "af0f99b",  "f2482bf"] 
 Please note that for the Google Cloud Vision API (the TextDetector class) you need to set a key in order to process the images. This key is ideally set as an environment variable using for example
@@ -472,7 +472,7 @@ directly on the right next to the image. This way, the user can directly inspect
 
 Image summary and query 
 The SummaryDetector summary VQA 
-
+
 This module is based on the LAVIS  library. Since the models can be quite large, an initial object is created which will load the necessary models into RAM/VRAM and then use them in the analysis. The user can specify the type of analysis to be performed using the analysis_type summary questions summary_and_questions 
 The implemented models are listed below.
@@ -725,7 +725,7 @@ directly on the right next to the image. This way, the user can directly inspect
 
 Detection of faces and facial expression analysis 
 Faces and facial expressions are detected and analyzed using the EmotionDetector faces 
-
+
 Depending on the features found on the image, the face detection module returns a different analysis content: If no faces are found on the image, all further steps are skipped and the result "face":  "No",  "multiple_faces":  "No",  "no_faces":  0,  "wears_mask":  ["No"],  "age":  [None],  "gender":  [None],  "race":  [None],  "emotion":  [None],  "emotion  (category)":  [None] "face":  "Yes",  "multiple_faces":  "Yes",  "no_faces":  2,  "wears_mask":  ["No",  "No"],  "age":  [27,  28],  "gender":  ["Man",  "Man"],  "race":  ["asian",  None],  "emotion":  ["angry",  "neutral"],  "emotion  (category)":  ["Negative",  "Neutral"] no_faces "emotion" ["angry",  "neutral"] 
diff --git a/build/html/notebooks/Example cropposts.html b/build/html/notebooks/Example cropposts.html
index ed3c417..84b3a2c 100644
--- a/build/html/notebooks/Example cropposts.html	
+++ b/build/html/notebooks/Example cropposts.html	
@@ -17,7 +17,7 @@
         
         
         
-        
+        
         
         
         
diff --git a/build/html/objects.inv b/build/html/objects.inv
index 782496f..ac5060e 100644
Binary files a/build/html/objects.inv and b/build/html/objects.inv differ
diff --git a/build/html/py-modindex.html b/build/html/py-modindex.html
index 46bd9e3..fce981d 100644
--- a/build/html/py-modindex.html
+++ b/build/html/py-modindex.html
@@ -15,7 +15,7 @@
         
         
         
-        
+        
         
         
     
diff --git a/build/html/readme_link.html b/build/html/readme_link.html
index f463942..08c14e9 100644
--- a/build/html/readme_link.html
+++ b/build/html/readme_link.html
@@ -16,7 +16,7 @@
         
         
         
-        
+        
         
         
     
diff --git a/build/html/search.html b/build/html/search.html
index e01bd24..a3fe80e 100644
--- a/build/html/search.html
+++ b/build/html/search.html
@@ -16,7 +16,7 @@
         
         
         
-        
+        
         
         
     
diff --git a/build/html/searchindex.js b/build/html/searchindex.js
index f0f4d95..b7e12b9 100644
--- a/build/html/searchindex.js
+++ b/build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["ammico", "create_API_key_link", "index", "license_link", "modules", "notebooks/DemoNotebook_ammico", "notebooks/Example cropposts", "readme_link", "set_up_credentials"], "filenames": ["ammico.rst", "create_API_key_link.md", "index.rst", "license_link.md", "modules.rst", "notebooks/DemoNotebook_ammico.ipynb", "notebooks/Example cropposts.ipynb", "readme_link.md", "set_up_credentials.md"], "titles": ["text module", "Instructions how to generate and enable a google Cloud Vision API key", "Welcome to AMMICO\u2019s documentation!", "License", "AMMICO package modules", "AMMICO Demonstration Notebook", "Crop posts module", "AMMICO - AI Media and Misinformation Content Analysis Tool", "Instructions how to generate and enable a google Cloud Vision API key"], "terms": {"class": [0, 5], "postprocesstext": [0, 4], "mydict": 0, "dict": [0, 5], "none": [0, 5], "use_csv": 0, "bool": [0, 5], "fals": [0, 5, 6], "csv_path": 0, "str": [0, 5, 6], "analyze_text": 0, "text_english": [0, 5, 7], "base": [0, 5, 7], "object": [0, 5], "analyse_top": [0, 4], "return_top": 0, "int": [0, 5], "3": [0, 2], "tupl": 0, "perform": [0, 5, 7], "topic": [0, 5, 7], "analysi": [0, 2], "us": [0, 1, 2, 3, 8], "bertop": 0, "paramet": [0, 5], "option": [0, 5, 7], "number": [0, 5, 7], "return": [0, 5, 7], "default": [0, 5], "A": [0, 3, 5], "contain": [0, 5, 7], "model": [0, 7], "datafram": [0, 2], "most": [0, 5], "frequent": 0, "get_text_df": [0, 4], "list": [0, 1, 5, 8], "extract": 0, "from": [0, 1, 3, 6, 7, 8], "provid": [0, 3, 5, 6, 7], "column": [0, 7], "name": [0, 1, 5, 6, 7, 8], "field": 0, "analyz": [0, 2, 7], "get_text_dict": [0, 4], "dictionari": [0, 5], "kei": [0, 2, 7], "textdetector": [0, 4, 5], "subdict": [0, 5], "analyse_text": [0, 5, 7], "model_nam": [0, 5], "revision_numb": [0, 5], "analysismethod": [0, 4], "analyse_imag": [0, 4, 5], "The": [0, 1, 2, 3, 6, 7, 8], "updat": [0, 5], "result": [0, 7], "clean_text": [0, 4], "clean": [0, 5, 7], "unrecogn": [0, 7], "word": [0, 5, 7], "ani": [0, 1, 3, 5, 7, 8], "get_text_from_imag": [0, 4], "detect": [0, 2], "imag": [0, 1, 2, 6, 8], "googl": [0, 2, 6], "cloud": [0, 2], "vision": [0, 2], "api": [0, 2, 5, 7], "remove_linebreak": [0, 4], "remov": [0, 6, 7], "linebreak": [0, 5], "origin": [0, 5, 6], "translat": [0, 2, 5], "set_kei": [0, 4], "set": [0, 1, 2, 6, 7, 8], "text_ner": [0, 4], "entiti": [0, 5, 7], "recognit": [0, 5], "transform": [0, 5, 7], "pipelin": [0, 5, 7], "text_sentiment_transform": [0, 4], "classif": 0, "sentiment": [0, 5, 7], "text_summari": [0, 4, 5], "gener": [0, 2, 5, 7], "translate_text": [0, 4], "english": [0, 5, 7], "summarydetector": [0, 4, 5], "model_typ": [0, 5], "analysis_typ": [0, 5], "summary_and_quest": [0, 5], "list_of_quest": [0, 5], "summary_model": 0, "summary_vis_processor": 0, "summary_vqa_model": 0, "summary_vqa_vis_processor": 0, "summary_vqa_txt_processor": 0, "summary_vqa_model_new": 0, "summary_vqa_vis_processors_new": 0, "summary_vqa_txt_processors_new": 0, "device_typ": [0, 5], "all_allowed_model_typ": [0, 4], "larg": [0, 5, 7], "vqa": [0, 5], "blip2_t5_pretrain_flant5xxl": [0, 5], "blip2_t5_pretrain_flant5xl": [0, 5], "blip2_t5_caption_coco_flant5xl": [0, 5], "blip2_opt_pretrain_opt2": [0, 5], "7b": [0, 5], "blip2_opt_pretrain_opt6": [0, 5], "blip2_opt_caption_coco_opt2": [0, 5], "blip2_opt_caption_coco_opt6": [0, 5], "allowed_analysis_typ": [0, 4], "question": [0, 5, 7], "allowed_model_typ": [0, 4], "allowed_new_model_typ": [0, 4], "consequential_quest": [0, 5], "analys": [0, 5, 7], "blip_capt": 0, "type": [0, 5, 6], "analis": 0, "pictur": [0, 2], "whether": [0, 3], "ask": [0, 5], "consequenti": 0, "work": [0, 5, 6, 7], "onli": [0, 5, 6, 7], "new": [0, 1, 5, 7, 8], "blip2": 0, "self": 0, "analyse_quest": [0, 4], "answer": [0, 5, 7], "free": [0, 1, 3, 8], "form": [0, 5], "about": [0, 5, 7], "written": [0, 5], "natur": 0, "languag": [0, 5, 7], "analyse_summari": [0, 4], "nondeterministic_summari": 0, "true": [0, 5, 6, 7], "creat": [0, 1, 2, 7, 8], "1": [0, 1, 2, 8], "constant": [0, 5], "non": 0, "determinist": 0, "caption": [0, 5, 7], "check_model": [0, 4], "check": [0, 5, 6, 7], "appropri": 0, "preprocessor": 0, "arg": 0, "nn": 0, "vis_processor": [0, 5], "visual": [0, 5, 7], "txt_processor": [0, 5], "model_old": 0, "i": [0, 1, 2, 3, 5, 6, 8], "old": 0, "load_model": [0, 4], "load": [0, 5, 6], "input": [0, 2, 7], "lavi": [0, 5, 7], "torch": [0, 7], "load_model_bas": [0, 4], "base_coco": 0, "load_model_base_blip2_opt_caption_coco_opt67b": [0, 4], "caption_coco_opt6": 0, "architectur": 0, "load_model_base_blip2_opt_pretrain_opt67b": [0, 4], "pretrain_opt6": 0, "load_model_blip2_opt_caption_coco_opt27b": [0, 4], "caption_coco_opt2": 0, "load_model_blip2_opt_pretrain_opt27b": [0, 4], "pretrain_opt2": 0, "load_model_blip2_t5_caption_coco_flant5xl": [0, 4], "caption_coco_flant5xl": 0, "load_model_blip2_t5_pretrain_flant5xl": [0, 4], "flan": 0, "t5": 0, "xl": 0, "load_model_blip2_t5_pretrain_flant5xxl": [0, 4], "xxl": 0, "load_model_larg": [0, 4], "large_coco": 0, "load_new_model": [0, 4], "load_vqa_model": [0, 4], "blip_vqa": 0, "multimodal_search": [0, 4, 5, 7], "multimodalsearch": [0, 4, 5], "compute_gradcam_batch": [0, 4], "visual_input": 0, "tensor": [0, 5], "text_input": [0, 5], "tokenized_text": 0, "block_num": 0, "6": [0, 5, 7], "comput": [0, 1, 5, 8], "gradcam": 0, "itm": [0, 5], "featur": [0, 2], "stack": 0, "devic": 0, "token": [0, 7], "block": 0, "output": [0, 2], "extract_image_features_bas": [0, 4], "images_tensor": 0, "blip_feature_extractor": 0, "albef_feature_extractor": 0, "features_image_stack": [0, 5], "extract_image_features_blip2": [0, 4], "blip2_feature_extractor": 0, "extract_image_features_clip": [0, 4], "clip_feature_extractor": 0, "extract_text_featur": [0, 4], "feature_extractor": 0, "features_text": 0, "get_att_map": [0, 4], "img": [0, 5], "ndarrai": 0, "att_map": 0, "blur": 0, "overlap": 0, "get": [0, 1, 4, 5, 7, 8], "attent": 0, "map": [0, 5], "np": 0, "get_pathes_from_queri": [0, 4], "queri": [0, 2, 7], "path": [0, 5, 6], "image_nam": [0, 5], "image_text_match_reord": [0, 4, 5], "search_queri": [0, 5], "itm_model_typ": 0, "image_kei": [0, 5], "sorted_list": [0, 5], "batch_siz": [0, 5], "need_grad_cam": [0, 5], "reorder": 0, "sort": 0, "similar": [0, 5, 7], "batch": [0, 6, 7], "size": [0, 5, 7], "need": [0, 5, 7], "blip2_coco": [0, 5], "doe": [0, 5, 7], "yet": 0, "itm_scores2": 0, "score": 0, "image_gradcam_with_itm": [0, 5], "itm_text_precess": [0, 4], "process": [0, 1, 5, 7, 8], "text_query_index": 0, "index": [0, 2, 7], "load_feature_extractor_model_albef": [0, 4], "cpu": [0, 5], "can": [0, 1, 2, 5, 6, 8], "cuda": [0, 5, 7], "load_feature_extractor_model_blip": [0, 4], "load_feature_extractor_model_blip2": [0, 4], "pretrain": [0, 5], "load_feature_extractor_model_clip_bas": [0, 4], "load_feature_extractor_model_clip_vitl14": [0, 4], "vit": [0, 5], "l": [0, 5], "14": 0, "load_feature_extractor_model_clip_vitl14_336": [0, 4], "336": 0, "load_tensor": [0, 4], "given": [0, 5, 6], "file": [0, 1, 2, 3, 6, 7, 8], "multimodal_devic": [0, 4], "filter_number_of_imag": [0, 5], "filter_val_limit": [0, 5], "filter_rel_error": [0, 5], "show": [0, 1, 5, 6, 8], "limit": [0, 3, 5, 6], "valu": [0, 5], "rel": 0, "error": [0, 5, 7], "between": [0, 5, 7], "parsing_imag": [0, 4, 5], "path_to_save_tensor": [0, 5], "saved_tensor": 0, "path_to_load_tensor": [0, 5], "pars": 0, "save": [0, 6], "tesor": 0, "querys_process": [0, 4], "multi_features_stack": 0, "read_and_process_imag": [0, 4], "image_path": 0, "read": [0, 2], "raw_imag": 0, "read_and_process_images_itm": [0, 4], "read_img": [0, 4], "filepath": 0, "pil": 0, "opt": [0, 5], "hostedtoolcach": 0, "python": [0, 1, 5, 6, 7, 8], "9": 0, "18": 0, "x64": [0, 7], "lib": [0, 7], "python3": 0, "site": 0, "packag": [0, 2, 6], "py": [0, 7], "resize_img": [0, 4], "raw_img": 0, "proport": 0, "resiz": 0, "240": 0, "p": [0, 7], "width": 0, "resized_imag": 0, "240p": 0, "save_tensor": [0, 4], "saved_features_imag": 0, "pt": [0, 5], "binari": 0, "show_result": [0, 4, 5], "empti": [0, 5], "upload_model_blip2_coco": [0, 4], "coco": [0, 5], "blip2_image_text_match": 0, "itm_model": [0, 5], "upload_model_blip_bas": [0, 4], "blip_image_text_match": 0, "upload_model_blip_larg": [0, 4], "emotiondetector": [0, 4, 5], "emotion_threshold": [0, 5], "float": [0, 5], "50": [0, 1, 5, 8], "0": [0, 2, 7], "race_threshold": [0, 5], "facial": [0, 2, 7], "express": [0, 2, 3, 7], "analyze_single_fac": [0, 4], "singl": [0, 5], "arrai": 0, "clean_subdict": [0, 4], "convert": [0, 2], "format": [0, 5], "facial_expression_analysi": [0, 4], "initi": [0, 5, 7], "wears_mask": [0, 4, 5], "determin": 0, "wear": [0, 5, 7], "mask": [0, 5, 7], "otherwis": [0, 3, 5], "deepface_symlink_processor": [0, 4], "color": [0, 2], "colordetector": [0, 4, 5], "delta_e_method": 0, "cie": 0, "1976": 0, "colorgram": [0, 5, 7], "librari": [0, 5, 6, 7], "n": [0, 5, 7], "common": 0, "One": 0, "problem": [0, 2], "ar": [0, 2, 5, 6], "taken": [0, 5], "befor": [0, 5, 7], "bee": 0, "categor": [0, 6], "so": [0, 3, 5, 7], "small": 0, "might": 0, "occur": 0, "ten": 0, "shade": 0, "grei": [0, 7], "while": [0, 5], "other": [0, 3, 5, 7], "present": [0, 5], "ignor": [0, 6], "becaus": [0, 5], "thi": [0, 1, 3, 5, 6, 7, 8], "n_color": 0, "100": [0, 5, 6], "wa": [0, 5, 7], "chosen": 0, "match": [0, 5, 6, 7], "closest": 0, "css3": 0, "delta": 0, "e": [0, 7], "metric": [0, 7], "thei": [0, 5, 7], "merg": [0, 3], "one": [0, 5, 7], "data": [0, 2, 6, 7], "frame": 0, "reduc": [0, 5], "smaller": [0, 5], "get_color_t": [0, 4], "function": [0, 5], "These": [0, 5, 7], "red": [0, 7], "green": [0, 7], "blue": [0, 7], "yellow": [0, 7], "cyan": [0, 7], "orang": [0, 7], "purpl": [0, 7], "pink": [0, 7], "brown": [0, 7], "white": [0, 7], "black": [0, 7], "percentag": [0, 5, 7], "rgb2name": [0, 4], "c": [0, 3, 7], "merge_color": 0, "take": [0, 5], "an": [0, 3, 5, 6, 7], "rgb": 0, "union": 0, "should": [0, 1, 5, 8], "compute_crop_corn": [0, 4], "dmatch": 0, "kp1": 0, "kp2": 0, "region": [0, 6], "30": [0, 5], "h_margin": 0, "v_margin": 0, "5": [0, 5], "min_match": 0, "estim": 0, "posit": [0, 5], "where": [0, 1, 5, 7, 8], "crop": [0, 2, 5], "cv2": [0, 6], "point": 0, "refer": [0, 1, 6, 8], "social": [0, 5, 6, 7], "media": [0, 2, 5, 6], "post": [0, 2, 5], "area": 0, "consid": [0, 5], "around": [0, 7], "keypoint": 0, "horizont": 0, "margin": 0, "subtract": 0, "minimum": [0, 5], "vertic": [0, 1, 8], "requir": [0, 5, 7], "corner": [0, 1, 8], "coordin": 0, "crop_image_from_post": [0, 4], "view": [0, 6], "final_h": 0, "part": [0, 6, 7], "up": [0, 1, 5, 7, 8], "which": [0, 5, 6, 7], "crop_media_post": [0, 4, 6], "ref_fil": [0, 6], "save_crop_dir": [0, 6], "plt_match": [0, 6], "plt_crop": [0, 6], "plt_imag": [0, 6], "comment": [0, 6, 7], "beyond": 0, "first": [0, 1, 5, 6, 8], "cut": 0, "off": 0, "all": [0, 2, 3], "signifi": [0, 5], "below": [0, 5, 6, 7], "directori": [0, 5], "write": [0, 2], "crop_posts_from_ref": [0, 4, 6], "ref_view": [0, 6], "numpi": [0, 7], "crop_posts_imag": [0, 4], "exclud": 0, "addit": 0, "sometim": [0, 5, 6, 7], "also": [0, 5, 7], "put": [0, 7], "back": [0, 1, 8], "later": 0, "draw_match": [0, 4], "img1": 0, "img2": 0, "sift": 0, "second": [0, 5], "kp_from_match": [0, 4], "indic": 0, "descriptor": 0, "train": [0, 5], "matching_point": [0, 4], "algorithm": [0, 5], "two": [0, 5, 7], "filter": [0, 5], "paste_image_and_com": [0, 4], "crop_post": 0, "crop_view": [0, 6], "past": 0, "togeth": 0, "without": [0, 3, 5, 7], "unecessari": 0, "inherit": 0, "method": [0, 5], "downloadresourc": [0, 4], "kwarg": 0, "remot": 0, "resourc": [0, 4, 5], "demand": [0, 5], "download": [0, 1, 5, 7, 8], "we": [0, 5, 6], "wrapper": 0, "pooch": 0, "regist": 0, "each": [0, 5], "allow": [0, 5, 7], "prefetch": 0, "through": [0, 5], "cli": [0, 5], "entri": 0, "ammico_prefetch_model": [0, 4], "append_data_to_dict": [0, 4, 5], "append": 0, "nest": [0, 5], "global": 0, "check_for_missing_kei": [0, 4], "miss": 0, "dump_df": [0, 4, 5], "dump": [0, 5], "find_fil": [0, 4, 5, 6], "pattern": [0, 5], "png": [0, 5, 6], "jpg": [0, 5], "jpeg": [0, 5], "gif": [0, 5], "webp": [0, 5], "avif": [0, 5], "tiff": [0, 5], "recurs": [0, 5], "20": [0, 5], "random_se": [0, 5], "find": [0, 5, 6, 7], "system": 0, "look": [0, 1, 5, 6, 8], "ammico": [0, 1, 6, 8], "current": [0, 1, 7, 8], "filenam": [0, 5], "either": [0, 5], "ext": 0, "just": [0, 5, 7], "includ": [0, 3, 5], "specif": [0, 5], "prefix": 0, "suffix": 0, "subdirectori": [0, 5], "maximum": [0, 5], "found": [0, 5, 6, 7], "length": 0, "2": [0, 2], "To": [0, 5, 7], "random": [0, 5], "seed": [0, 5], "shuffl": [0, 5], "If": [0, 5, 6, 7], "shuffel": 0, "id": [0, 1, 5, 8], "get_datafram": [0, 4, 5], "initialize_dict": [0, 4], "filelist": 0, "is_interact": [0, 4], "run": [0, 1, 5, 6, 7, 8], "interact": [0, 5], "environ": [0, 5], "iter": [0, 4], "analysisexplor": [0, 4, 5], "run_serv": [0, 4, 5], "port": [0, 5], "8050": 0, "dash": [0, 5], "server": [0, 5], "start": 0, "explor": [0, 5], "update_pictur": [0, 4], "img_path": 0, "callback": 0, "select": [0, 1, 8], "pngimageplugin": 0, "go": [1, 8], "click": [1, 5, 8], "consol": [1, 8], "sign": [1, 8], "your": [1, 2, 6, 7, 8], "account": [1, 7, 8], "prompt": [1, 5, 8], "bring": [1, 8], "you": [1, 5, 6, 7, 8], "follow": [1, 3, 5, 7, 8], "page": [1, 2, 7, 8], "project": [1, 7, 8], "top": [1, 5, 8], "screen": [1, 8], "left": [1, 5, 8], "drop": [1, 8], "down": [1, 8], "menu": [1, 5, 8], "pop": [1, 8], "window": [1, 8], "enter": [1, 8], "now": [1, 5, 6, 8], "dashboard": [1, 8], "In": [1, 5, 7, 8], "right": [1, 3, 5, 8], "three": [1, 5, 8], "dot": [1, 8], "servic": [1, 7, 8], "pick": [1, 8], "wish": [1, 8], "done": [1, 5, 6, 7, 8], "manag": [1, 8], "json": [1, 5, 7, 8], "privat": [1, 5, 8], "directli": [1, 5, 8], "It": [1, 5, 6, 7, 8], "folder": [1, 6, 7, 8], "someth": [1, 5, 6, 8], "like": [1, 5, 8], "inform": [1, 6, 7, 8], "ha": [1, 5, 8], "been": [1, 5, 8], "blank": [1, 8], "out": [1, 3, 5, 6, 7, 8], "screenshot": [1, 8], "browser": [1, 8], "search": [1, 2, 4, 7, 8], "place": [1, 5, 7, 8], "jupyt": [1, 5, 8], "notebook": [1, 2, 6, 7, 8], "when": [1, 5, 6, 7, 8], "Or": [1, 5, 8], "upload": [1, 7, 8], "drive": [1, 5, 6, 7, 8], "colaboratori": [1, 8], "make": [1, 5, 7, 8], "sure": [1, 5, 8], "bill": [1, 8], "month": [1, 8], "after": [1, 5, 8], "charg": [1, 3, 8], "more": [1, 5, 7, 8], "than": [1, 5, 8], "1000": [1, 8], "per": [1, 8], "see": [1, 5, 7, 8], "here": [1, 5, 7, 8], "ai": 2, "misinform": [2, 5], "tool": 2, "instal": [2, 5, 6], "compat": 2, "solv": 2, "usag": 2, "faq": 2, "what": [2, 5], "happen": 2, "sent": 2, "text": [2, 4, 5, 6], "don": 2, "t": [2, 6], "have": [2, 5], "internet": 2, "access": 2, "still": 2, "instruct": [2, 5, 7], "how": [2, 5], "enabl": [2, 5, 7], "demonstr": [2, 7], "test": [2, 6], "dataset": 2, "import": [2, 6, 7], "step": [2, 6, 7], "inspect": 2, "graphic": 2, "user": [2, 7], "interfac": 2, "4": [2, 7], "panda": 2, "csv": [2, 7], "detector": [2, 7], "modul": [2, 7], "summari": [2, 4, 7], "face": [2, 4, 7], "multimod": [2, 4, 7], "further": [2, 7], "color_analysi": [2, 4], "croppost": [2, 4, 6, 7], "util": [2, 4, 6], "displai": [2, 4, 5], "licens": 2, "mit": 3, "copyright": 3, "2022": [3, 7], "ssc": 3, "permiss": 3, "herebi": 3, "grant": 3, "person": [3, 5, 7], "obtain": 3, "copi": 3, "softwar": 3, "associ": [3, 5], "document": 3, "deal": 3, "restrict": [3, 7], "modifi": 3, "publish": 3, "distribut": 3, "sublicens": 3, "sell": 3, "permit": 3, "whom": 3, "furnish": 3, "do": [3, 5, 7], "subject": [3, 7], "condit": 3, "abov": [3, 5, 7], "notic": 3, "shall": 3, "substanti": 3, "portion": 3, "THE": 3, "AS": 3, "warranti": 3, "OF": 3, "kind": 3, "OR": 3, "impli": 3, "BUT": 3, "NOT": 3, "TO": 3, "merchant": 3, "fit": 3, "FOR": 3, "particular": 3, "purpos": [3, 5], "AND": 3, "noninfring": 3, "IN": 3, "NO": 3, "event": 3, "author": 3, "holder": 3, "BE": 3, "liabl": 3, "claim": 3, "damag": 3, "liabil": 3, "action": 3, "contract": 3, "tort": 3, "aris": 3, "connect": [3, 5, 7], "WITH": 3, "With": 5, "content": [5, 6], "same": [5, 6, 7], "time": [5, 7], "showcas": 5, "capabl": 5, "colab": [5, 6, 7], "local": [5, 7], "own": 5, "hpc": 5, "cell": [5, 6], "machin": [5, 7], "conda": [5, 7], "pip": [5, 6], "altern": 5, "develop": [5, 7], "version": [5, 6, 7], "github": [5, 6], "repositori": 5, "git": [5, 6], "http": [5, 6], "com": [5, 6, 7], "ssciwr": [5, 6], "flake8": [5, 6], "noqa": [5, 6], "get_ipython": [5, 6], "setuptool": [5, 6], "61": [5, 6], "qqq": [5, 6], "uninstal": [5, 6], "some": [5, 6, 7], "pre": [5, 7], "due": [5, 6], "incompat": 5, "ye": 5, "tensorflow": 5, "probabl": 5, "dopamin": 5, "rl": 5, "lida": 5, "gbq": 5, "torchaudio": [5, 7], "torchdata": 5, "torchtext": 5, "orbax": 5, "checkpoint": 5, "flex": 5, "y": [5, 6], "mount": [5, 6], "skip": 5, "load_dataset": 5, "pathlib": 5, "gate": 5, "huggingfac": 5, "login": 5, "iulusoi": 5, "next": 5, "store": [5, 7], "automat": [5, 7], "exist": 5, "data_path": 5, "mkdir": [5, 7], "parent": 5, "exist_ok": 5, "enumer": 5, "o": [5, 6, 7], "progress": 5, "bar": 5, "tqdm": 5, "mai": [5, 7], "restart": 5, "session": 5, "correct": [5, 7], "emotitiondetector": 5, "give": 5, "code": [5, 6], "tf": 5, "ones": 5, "For": [5, 7], "pleas": [5, 6, 7], "runtim": 5, "And": 5, "rerun": 5, "again": 5, "alreadi": 5, "execut": [5, 6], "veri": [5, 7], "fast": 5, "note": 5, "order": [5, 7], "ideal": 5, "variabl": [5, 7], "exampl": [5, 6], "google_application_credenti": [5, 7], "mydriv": 5, "campaign": 5, "981aa55a3b13": 5, "sever": [5, 7], "subfold": 5, "via": 5, "extens": [5, 7], "both": [5, 7], "keyword": [5, 7], "possibl": [5, 7], "locat": [5, 7], "ammico_data_hom": 5, "appli": 5, "few": [5, 7], "preserv": 5, "fill": 5, "toggl": 5, "image_dict": 5, "as_posix": [5, 6], "15": [5, 6], "suitabl": 5, "complet": 5, "whole": 5, "explain": 5, "correspond": 5, "section": 5, "differ": [5, 6], "slightli": 5, "wai": [5, 6], "accur": [5, 7], "pass": 5, "messag": 5, "case": 5, "open": 5, "app": 5, "insid": 5, "dropdown": 5, "well": 5, "shown": 5, "chang": 5, "best": [5, 7], "product": 5, "analysis_explor": 5, "8055": 5, "depend": [5, 7], "avail": [5, 7], "creation": 5, "dump_fil": 5, "calcul": 5, "everi": 5, "dump_everi": 5, "10": [5, 6, 7], "desir": 5, "call": [5, 7], "sequenti": 5, "num": 5, "total": 5, "len": 5, "loop": 5, "image_df": 5, "to_csv": 5, "computation": 5, "explicitli": 5, "separ": 5, "emot": 5, "image_summary_detector": 5, "re": [5, 6, 7], "iniati": 5, "": 5, "conveni": 5, "head": [5, 6], "data_out": 5, "detail": 5, "init": 5, "googletran": [5, 7], "whitespac": 5, "syntax": 5, "spaci": [5, 7], "summar": 5, "task": [5, 7], "03": 5, "2023": 5, "sshleifer": 5, "distilbart": 5, "cnn": 5, "12": [5, 7], "distilbert": 5, "uncas": 5, "finetun": 5, "sst": 5, "dbmdz": 5, "bert": 5, "conll03": 5, "ner": 5, "even": 5, "revis": 5, "specifi": 5, "a4f8f3": 5, "af0f99b": 5, "f2482bf": 5, "carri": [5, 6, 7], "adapt": 5, "subsequ": 5, "descript": [5, 7], "tabl": 5, "text_languag": [5, 7], "domin": 5, "text_clean": [5, 7], "unrecogniz": 5, "sentiment_scor": 5, "confid": 5, "predict": [5, 7], "entity_typ": 5, "sinc": 5, "quit": 5, "necessari": [5, 7], "ram": 5, "vram": 5, "them": 5, "prepar": 5, "hold": 5, "implement": 5, "blip": 5, "b": 5, "16": 5, "fine": [5, 6], "tune": 5, "v2": 5, "flant5xxl": 5, "flant5xl": 5, "tpu": 5, "video": 5, "card": 5, "advanc": 5, "gb": [5, 7], "memori": [5, 7], "paid": 5, "a100": 5, "choos": [5, 7], "string": 5, "mani": 5, "politician": 5, "medicin": 5, "want": [5, 7], "image_summary_vqa_detector": 5, "const_image_summari": 5, "upon": 5, "3_non": 5, "deterministic_summari": 5, "ummary_and_quest": 5, "defin": 5, "heavi": 5, "approxim": 5, "60gb": 5, "easili": 5, "20gb": 5, "gpu": [5, 7], "obj": 5, "pretrain_": 5, "zero": 5, "shot": 5, "caption_coco_": 5, "style": 5, "flant5": 5, "mean": 5, "equip": 5, "llm": 5, "respect": 5, "But": 5, "peopl": 5, "previou": 5, "context": 5, "combin": 5, "countri": 5, "usa": 5, "why": 5, "american": 5, "flag": 5, "background": 5, "come": 5, "citi": 5, "frankfurt": 5, "argument": 5, "cosequential_quest": 5, "howev": 5, "bit": 5, "slower": 5, "simultan": 5, "outsid": 5, "retinafac": [5, 7], "worn": 5, "ag": [5, 7], "gender": [5, 7], "race": [5, 7], "deepfac": [5, 7], "No": 5, "multiple_fac": 5, "no_fac": 5, "categori": 5, "partial": 5, "conceal": 5, "latter": [5, 7], "could": 5, "27": 5, "28": 5, "man": 5, "asian": 5, "angri": 5, "neutral": 5, "neg": 5, "item": [5, 6], "largest": 5, "anger": 5, "report": 5, "seven": 5, "fear": 5, "sad": 5, "disgust": 5, "happi": 5, "surpris": 5, "assign": 5, "high": 5, "likelihood": 5, "being": 5, "easi": 5, "human": 5, "therefor": 5, "ad": 5, "count": 5, "lower": 5, "overal": 5, "identifi": 5, "threshold": 5, "optim": 5, "multipl": 5, "cover": 5, "albef": 5, "clip_bas": 5, "clip_vitl14": 5, "clip_vitl14_336": 5, "my_obj": 5, "numer": 5, "represent": 5, "onc": 5, "number_of_imag": 5, "_": 5, "_saved_features_imag": 5, "fraction": 5, "uncom": 5, "5_clip_base_saved_features_imag": 5, "our": [5, 7], "consist": 5, "much": 5, "importlib_resourc": [5, 6], "image_example_queri": 5, "press": 5, "confer": 5, "world": 5, "dog": 5, "image_example_path": 5, "That": 5, "rank": 5, "bigger": 5, "less": 5, "discard": 5, "ab": 5, "current_simularity_valu": 5, "best_simularity_value_in_current_search": 5, "top1": 5, "35": 5, "launch": 5, "sourc": [5, 7], "special": 5, "better": 5, "approach": 5, "intens": 5, "main": [5, 7], "relev": 5, "among": 5, "blip_bas": 5, "blip_larg": 5, "try": 5, "heat": 5, "thu": 5, "itm_scor": 5, "Then": 5, "add": [5, 7], "rememb": 5, "thrown": 5, "along": 5, "outdict": 5, "df": 5, "primari": 5, "k": 5, "element": [5, 7], "moment": 5, "patient": 5, "export": [5, 7], "colour": [5, 7], "tab": 5, "sidebar": 5, "increment": 5, "instanc": 5, "8057": 5, "instead": 5, "experiment": [5, 7], "keep": 6, "manual": 6, "extra": 6, "pin": 6, "latest": 6, "doesn": 6, "seem": 6, "moral": 6, "prevent": [6, 7], "wrong": 6, "opencv": 6, "contrib": 6, "isdir": 6, "ref": 6, "wget": 6, "archiv": 6, "zip": 6, "q": 6, "unzip": 6, "qq": 6, "d": [6, 7], "mv": 6, "f": 6, "rm": 6, "rf": 6, "crpo": 6, "matplotlib": 6, "pyplot": 6, "plt": 6, "pkg": 6, "everyth": 6, "substitut": 6, "sampl": [6, 7], "path_ref": 6, "00": 6, "imread": 6, "rgb_ref_view": 6, "cvtcolor": 6, "color_bgr2rgb": 6, "figur": 6, "figsiz": 6, "imshow": 6, "path_post": 6, "rgb_view": 6, "plot": 6, "line": 6, "applic": 6, "crop_dir": 6, "ref_dir": 6, "imperfect": 6, "improp": 6, "easier": 6, "print": [6, 7], "paper": 7, "depth": 7, "under": 7, "collect": 7, "spell": 7, "textual": 7, "its": 7, "compon": 7, "g": 7, "framework": 7, "avoid": 7, "proper": 7, "activ": 7, "ammico_env": 7, "cudatoolkit": 7, "forg": 7, "11": 7, "8": 7, "nvidia": 7, "cudnn": 7, "cu11": 7, "m": 7, "163": 7, "script": 7, "ld_library_path": 7, "conda_prefix": 7, "etc": 7, "echo": 7, "cudnn_path": 7, "dirnam": 7, "__file__": 7, "env_var": 7, "sh": 7, "deactiv": 7, "torchvis": 7, "url": 7, "whl": 7, "cu118": 7, "command": 7, "channel": 7, "prioriti": 7, "23": 7, "pycocotool": 7, "vs_buildtool": 7, "ex": 7, "visualstudio": 7, "microsoft": 7, "cpp": 7, "build": 7, "studio": 7, "msvc": 7, "v143": 7, "v": 7, "x86": 7, "sdk": 7, "Be": 7, "care": 7, "7": 7, "disk": 7, "space": 7, "There": 7, "ipynb": 7, "extrac": 7, "websit": 7, "describ": 7, "recogn": 7, "speech": 7, "lemma": 7, "text_english_correct": 7, "polar": 7, "textblob": 7, "hug": 7, "anoth": 7, "intellig": 7, "state": 7, "art": 7, "databas": 7, "presenc": 7, "distanc": 7, "classifi": 7, "accord": 7, "share": 7, "third": 7, "parti": 7, "won": 7, "send": 7, "public": 7, "compli": 7, "addendum": 7, "onlin": 7, "immedi": 7, "respons": 7, "oper": 7, "batchannotateimag": 7, "batchannotatefil": 7, "persist": 7, "asynchron": 7, "offlin": 7, "asyncbatchannotateimag": 7, "asyncbatchannotatefil": 7, "must": 7, "short": 7, "period": 7, "typic": 7, "delet": 7, "failsaf": 7, "live": 7, "ttl": 7, "hour": 7, "temporarili": 7, "log": 7, "metadata": 7, "request": 7, "receiv": 7, "improv": 7, "combat": 7, "abus": 7, "made": 7, "held": 7, "briefli": 7}, "objects": {"": [[0, 0, 0, "-", "colors"], [0, 0, 0, "-", "cropposts"], [0, 0, 0, "-", "display"], [0, 0, 0, "-", "faces"], [0, 0, 0, "-", "multimodal_search"], [0, 0, 0, "-", "summary"], [0, 0, 0, "-", "text"], [0, 0, 0, "-", "utils"]], "colors": [[0, 1, 1, "", "ColorDetector"]], "colors.ColorDetector": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "rgb2name"], [0, 2, 1, "", "set_keys"]], "cropposts": [[0, 3, 1, "", "compute_crop_corner"], [0, 3, 1, "", "crop_image_from_post"], [0, 3, 1, "", "crop_media_posts"], [0, 3, 1, "", "crop_posts_from_refs"], [0, 3, 1, "", "crop_posts_image"], [0, 3, 1, "", "draw_matches"], [0, 3, 1, "", "kp_from_matches"], [0, 3, 1, "", "matching_points"], [0, 3, 1, "", "paste_image_and_comment"]], "display": [[0, 1, 1, "", "AnalysisExplorer"]], "display.AnalysisExplorer": [[0, 2, 1, "", "run_server"], [0, 2, 1, "", "update_picture"]], "faces": [[0, 1, 1, "", "EmotionDetector"], [0, 3, 1, "", "deepface_symlink_processor"]], "faces.EmotionDetector": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "analyze_single_face"], [0, 2, 1, "", "clean_subdict"], [0, 2, 1, "", "facial_expression_analysis"], [0, 2, 1, "", "set_keys"], [0, 2, 1, "", "wears_mask"]], "multimodal_search": [[0, 1, 1, "", "MultimodalSearch"]], "multimodal_search.MultimodalSearch": [[0, 2, 1, "", "compute_gradcam_batch"], [0, 2, 1, "", "extract_image_features_basic"], [0, 2, 1, "", "extract_image_features_blip2"], [0, 2, 1, "", "extract_image_features_clip"], [0, 2, 1, "", "extract_text_features"], [0, 2, 1, "", "get_att_map"], [0, 2, 1, "", "get_pathes_from_query"], [0, 2, 1, "", "image_text_match_reordering"], [0, 2, 1, "", "itm_text_precessing"], [0, 2, 1, "", "load_feature_extractor_model_albef"], [0, 2, 1, "", "load_feature_extractor_model_blip"], [0, 2, 1, "", "load_feature_extractor_model_blip2"], [0, 2, 1, "", "load_feature_extractor_model_clip_base"], [0, 2, 1, "", "load_feature_extractor_model_clip_vitl14"], [0, 2, 1, "", "load_feature_extractor_model_clip_vitl14_336"], [0, 2, 1, "", "load_tensors"], [0, 4, 1, "", "multimodal_device"], [0, 2, 1, "", "multimodal_search"], [0, 2, 1, "", "parsing_images"], [0, 2, 1, "", "querys_processing"], [0, 2, 1, "", "read_and_process_images"], [0, 2, 1, "", "read_and_process_images_itm"], [0, 2, 1, "", "read_img"], [0, 2, 1, "", "resize_img"], [0, 2, 1, "", "save_tensors"], [0, 2, 1, "", "show_results"], [0, 2, 1, "", "upload_model_blip2_coco"], [0, 2, 1, "", "upload_model_blip_base"], [0, 2, 1, "", "upload_model_blip_large"]], "summary": [[0, 1, 1, "", "SummaryDetector"]], "summary.SummaryDetector": [[0, 4, 1, "", "all_allowed_model_types"], [0, 4, 1, "", "allowed_analysis_types"], [0, 4, 1, "", "allowed_model_types"], [0, 4, 1, "", "allowed_new_model_types"], [0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "analyse_questions"], [0, 2, 1, "", "analyse_summary"], [0, 2, 1, "", "check_model"], [0, 2, 1, "", "load_model"], [0, 2, 1, "", "load_model_base"], [0, 2, 1, "", "load_model_base_blip2_opt_caption_coco_opt67b"], [0, 2, 1, "", "load_model_base_blip2_opt_pretrain_opt67b"], [0, 2, 1, "", "load_model_blip2_opt_caption_coco_opt27b"], [0, 2, 1, "", "load_model_blip2_opt_pretrain_opt27b"], [0, 2, 1, "", "load_model_blip2_t5_caption_coco_flant5xl"], [0, 2, 1, "", "load_model_blip2_t5_pretrain_flant5xl"], [0, 2, 1, "", "load_model_blip2_t5_pretrain_flant5xxl"], [0, 2, 1, "", "load_model_large"], [0, 2, 1, "", "load_new_model"], [0, 2, 1, "", "load_vqa_model"]], "text": [[0, 1, 1, "", "PostprocessText"], [0, 1, 1, "", "TextDetector"]], "text.PostprocessText": [[0, 2, 1, "", "analyse_topic"], [0, 2, 1, "", "get_text_df"], [0, 2, 1, "", "get_text_dict"]], "text.TextDetector": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "clean_text"], [0, 2, 1, "", "get_text_from_image"], [0, 2, 1, "", "remove_linebreaks"], [0, 2, 1, "", "set_keys"], [0, 2, 1, "", "text_ner"], [0, 2, 1, "", "text_sentiment_transformers"], [0, 2, 1, "", "text_summary"], [0, 2, 1, "", "translate_text"]], "utils": [[0, 1, 1, "", "AnalysisMethod"], [0, 1, 1, "", "DownloadResource"], [0, 3, 1, "", "ammico_prefetch_models"], [0, 3, 1, "", "append_data_to_dict"], [0, 3, 1, "", "check_for_missing_keys"], [0, 3, 1, "", "dump_df"], [0, 3, 1, "", "find_files"], [0, 3, 1, "", "get_color_table"], [0, 3, 1, "", "get_dataframe"], [0, 3, 1, "", "initialize_dict"], [0, 3, 1, "", "is_interactive"], [0, 3, 1, "", "iterable"]], "utils.AnalysisMethod": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "set_keys"]], "utils.DownloadResource": [[0, 2, 1, "", "get"], [0, 4, 1, "", "resources"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"text": [0, 7], "modul": [0, 4, 5, 6], "summari": [0, 5], "multimod": [0, 5], "search": [0, 5], "face": [0, 5], "color_analysi": 0, "croppost": 0, "util": 0, "displai": 0, "instruct": [1, 8], "how": [1, 8], "gener": [1, 8], "enabl": [1, 8], "googl": [1, 5, 7, 8], "cloud": [1, 5, 7, 8], "vision": [1, 5, 7, 8], "api": [1, 8], "kei": [1, 5, 8], "welcom": 2, "ammico": [2, 4, 5, 7], "": 2, "document": 2, "content": [2, 7], "indic": 2, "tabl": 2, "licens": 3, "packag": [4, 5, 7], "demonstr": 5, "notebook": 5, "us": [5, 7], "test": 5, "dataset": 5, "import": 5, "step": 5, "0": 5, "creat": 5, "set": 5, "1": [5, 7], "read": 5, "your": 5, "data": 5, "2": [5, 7], "inspect": 5, "input": 5, "file": 5, "graphic": 5, "user": 5, "interfac": 5, "3": [5, 7], "analyz": 5, "all": 5, "imag": [5, 7], "4": 5, "convert": 5, "analysi": [5, 7], "output": 5, "panda": 5, "datafram": 5, "write": 5, "csv": 5, "The": 5, "detector": 5, "queri": 5, "blip2": 5, "model": 5, "detect": [5, 7], "facial": 5, "express": 5, "index": 5, "extract": [5, 7], "featur": [5, 7], "from": 5, "select": 5, "folder": 5, "formul": 5, "improv": 5, "result": 5, "save": 5, "color": [5, 7], "pictur": 5, "further": 5, "crop": [6, 7], "post": [6, 7], "ai": 7, "media": 7, "misinform": 7, "tool": 7, "instal": 7, "compat": 7, "problem": 7, "solv": 7, "first": 7, "tensorflow": 7, "http": 7, "www": 7, "org": 7, "pip": 7, "second": 7, "pytorch": 7, "after": 7, "we": 7, "prepar": 7, "right": 7, "environ": 7, "can": 7, "micromamba": 7, "window": 7, "usag": 7, "emot": 7, "recognit": 7, "hue": 7, "faq": 7, "what": 7, "happen": 7, "ar": 7, "sent": 7, "i": 7, "translat": 7, "don": 7, "t": 7, "have": 7, "internet": 7, "access": 7, "still": 7}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"text module": [[0, "module-text"]], "summary module": [[0, "module-summary"]], "multimodal search module": [[0, "module-multimodal_search"]], "faces module": [[0, "module-faces"]], "color_analysis module": [[0, "module-colors"]], "cropposts module": [[0, "module-cropposts"]], "utils module": [[0, "module-utils"]], "display module": [[0, "module-display"]], "Instructions how to generate and enable a google Cloud Vision API key": [[1, "instructions-how-to-generate-and-enable-a-google-cloud-vision-api-key"], [8, "instructions-how-to-generate-and-enable-a-google-cloud-vision-api-key"]], "Welcome to AMMICO\u2019s documentation!": [[2, "welcome-to-ammico-s-documentation"]], "Contents:": [[2, null]], "Indices and tables": [[2, "indices-and-tables"]], "License": [[3, "license"]], "AMMICO package modules": [[4, "ammico-package-modules"]], "AMMICO Demonstration Notebook": [[5, "AMMICO-Demonstration-Notebook"]], "Use a test dataset": [[5, "Use-a-test-dataset"]], "Import the ammico package.": [[5, "Import-the-ammico-package."]], "Step 0: Create and set a Google Cloud Vision Key": [[5, "Step-0:-Create-and-set-a-Google-Cloud-Vision-Key"]], "Step 1: Read your data into AMMICO": [[5, "Step-1:-Read-your-data-into-AMMICO"]], "Step 2: Inspect the input files using the graphical user interface": [[5, "Step-2:-Inspect-the-input-files-using-the-graphical-user-interface"]], "Step 3: Analyze all images": [[5, "Step-3:-Analyze-all-images"]], "Step 4: Convert analysis output to pandas dataframe and write csv": [[5, "Step-4:-Convert-analysis-output-to-pandas-dataframe-and-write-csv"]], "The detector modules": [[5, "The-detector-modules"]], "Image summary and query": [[5, "Image-summary-and-query"]], "BLIP2 models": [[5, "BLIP2-models"]], "Detection of faces and facial expression analysis": [[5, "Detection-of-faces-and-facial-expression-analysis"]], "Image Multimodal Search": [[5, "Image-Multimodal-Search"]], "Indexing and extracting features from images in selected folder": [[5, "Indexing-and-extracting-features-from-images-in-selected-folder"]], "Formulate your search queries": [[5, "Formulate-your-search-queries"]], "Improve the search results": [[5, "Improve-the-search-results"]], "Save search results to csv": [[5, "Save-search-results-to-csv"]], "Color analysis of pictures": [[5, "Color-analysis-of-pictures"]], "Further detector modules": [[5, "Further-detector-modules"]], "Crop posts module": [[6, "Crop-posts-module"]], "AMMICO - AI Media and Misinformation Content Analysis Tool": [[7, "ammico-ai-media-and-misinformation-content-analysis-tool"]], "Installation": [[7, "installation"]], "Compatibility problems solving": [[7, "compatibility-problems-solving"]], "1. First, install tensorflow (https://www.tensorflow.org/install/pip)": [[7, "first-install-tensorflow-https-www-tensorflow-org-install-pip"]], "2. Second, install pytorch": [[7, "second-install-pytorch"]], "3. After we prepared right environment we can install the ammico package": [[7, "after-we-prepared-right-environment-we-can-install-the-ammico-package"]], "Micromamba": [[7, "micromamba"]], "Windows": [[7, "windows"]], "Usage": [[7, "usage"]], "Features": [[7, "features"]], "Text extraction": [[7, "text-extraction"]], "Content extraction": [[7, "content-extraction"]], "Emotion recognition": [[7, "emotion-recognition"]], "Color/hue detection": [[7, "color-hue-detection"]], "Cropping of posts": [[7, "cropping-of-posts"]], "FAQ": [[7, "faq"]], "What happens to the images that are sent to google Cloud Vision?": [[7, "what-happens-to-the-images-that-are-sent-to-google-cloud-vision"]], "What happens to the text that is sent to google Translate?": [[7, "what-happens-to-the-text-that-is-sent-to-google-translate"]], "What happens if I don\u2019t have internet access - can I still use ammico?": [[7, "what-happens-if-i-don-t-have-internet-access-can-i-still-use-ammico"]]}, "indexentries": {"analysisexplorer (class in display)": [[0, "display.AnalysisExplorer"]], "analysismethod (class in utils)": [[0, "utils.AnalysisMethod"]], "colordetector (class in colors)": [[0, "colors.ColorDetector"]], "downloadresource (class in utils)": [[0, "utils.DownloadResource"]], "emotiondetector (class in faces)": [[0, "faces.EmotionDetector"]], "multimodalsearch (class in multimodal_search)": [[0, "multimodal_search.MultimodalSearch"]], "postprocesstext (class in text)": [[0, "text.PostprocessText"]], "summarydetector (class in summary)": [[0, "summary.SummaryDetector"]], "textdetector (class in text)": [[0, "text.TextDetector"]], "all_allowed_model_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.all_allowed_model_types"]], "allowed_analysis_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.allowed_analysis_types"]], "allowed_model_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.allowed_model_types"]], "allowed_new_model_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.allowed_new_model_types"]], "ammico_prefetch_models() (in module utils)": [[0, "utils.ammico_prefetch_models"]], "analyse_image() (colors.colordetector method)": [[0, "colors.ColorDetector.analyse_image"]], "analyse_image() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.analyse_image"]], "analyse_image() (summary.summarydetector method)": [[0, "summary.SummaryDetector.analyse_image"]], "analyse_image() (text.textdetector method)": [[0, "text.TextDetector.analyse_image"]], "analyse_image() (utils.analysismethod method)": [[0, "utils.AnalysisMethod.analyse_image"]], "analyse_questions() (summary.summarydetector method)": [[0, "summary.SummaryDetector.analyse_questions"]], "analyse_summary() (summary.summarydetector method)": [[0, "summary.SummaryDetector.analyse_summary"]], "analyse_topic() (text.postprocesstext method)": [[0, "text.PostprocessText.analyse_topic"]], "analyze_single_face() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.analyze_single_face"]], "append_data_to_dict() (in module utils)": [[0, "utils.append_data_to_dict"]], "check_for_missing_keys() (in module utils)": [[0, "utils.check_for_missing_keys"]], "check_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.check_model"]], "clean_subdict() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.clean_subdict"]], "clean_text() (text.textdetector method)": [[0, "text.TextDetector.clean_text"]], "colors": [[0, "module-colors"]], "compute_crop_corner() (in module cropposts)": [[0, "cropposts.compute_crop_corner"]], "compute_gradcam_batch() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.compute_gradcam_batch"]], "crop_image_from_post() (in module cropposts)": [[0, "cropposts.crop_image_from_post"]], "crop_media_posts() (in module cropposts)": [[0, "cropposts.crop_media_posts"]], "crop_posts_from_refs() (in module cropposts)": [[0, "cropposts.crop_posts_from_refs"]], "crop_posts_image() (in module cropposts)": [[0, "cropposts.crop_posts_image"]], "cropposts": [[0, "module-cropposts"]], "deepface_symlink_processor() (in module faces)": [[0, "faces.deepface_symlink_processor"]], "display": [[0, "module-display"]], "draw_matches() (in module cropposts)": [[0, "cropposts.draw_matches"]], "dump_df() (in module utils)": [[0, "utils.dump_df"]], "extract_image_features_basic() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_image_features_basic"]], "extract_image_features_blip2() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_image_features_blip2"]], "extract_image_features_clip() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_image_features_clip"]], "extract_text_features() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_text_features"]], "faces": [[0, "module-faces"]], "facial_expression_analysis() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.facial_expression_analysis"]], "find_files() (in module utils)": [[0, "utils.find_files"]], "get() (utils.downloadresource method)": [[0, "utils.DownloadResource.get"]], "get_att_map() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.get_att_map"]], "get_color_table() (in module utils)": [[0, "utils.get_color_table"]], "get_dataframe() (in module utils)": [[0, "utils.get_dataframe"]], "get_pathes_from_query() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.get_pathes_from_query"]], "get_text_df() (text.postprocesstext method)": [[0, "text.PostprocessText.get_text_df"]], "get_text_dict() (text.postprocesstext method)": [[0, "text.PostprocessText.get_text_dict"]], "get_text_from_image() (text.textdetector method)": [[0, "text.TextDetector.get_text_from_image"]], "image_text_match_reordering() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.image_text_match_reordering"]], "initialize_dict() (in module utils)": [[0, "utils.initialize_dict"]], "is_interactive() (in module utils)": [[0, "utils.is_interactive"]], "iterable() (in module utils)": [[0, "utils.iterable"]], "itm_text_precessing() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.itm_text_precessing"]], "kp_from_matches() (in module cropposts)": [[0, "cropposts.kp_from_matches"]], "load_feature_extractor_model_albef() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_albef"]], "load_feature_extractor_model_blip() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_blip"]], "load_feature_extractor_model_blip2() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_blip2"]], "load_feature_extractor_model_clip_base() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_clip_base"]], "load_feature_extractor_model_clip_vitl14() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_clip_vitl14"]], "load_feature_extractor_model_clip_vitl14_336() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_clip_vitl14_336"]], "load_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model"]], "load_model_base() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_base"]], "load_model_base_blip2_opt_caption_coco_opt67b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b"]], "load_model_base_blip2_opt_pretrain_opt67b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_base_blip2_opt_pretrain_opt67b"]], "load_model_blip2_opt_caption_coco_opt27b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_opt_caption_coco_opt27b"]], "load_model_blip2_opt_pretrain_opt27b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_opt_pretrain_opt27b"]], "load_model_blip2_t5_caption_coco_flant5xl() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl"]], "load_model_blip2_t5_pretrain_flant5xl() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_t5_pretrain_flant5xl"]], "load_model_blip2_t5_pretrain_flant5xxl() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl"]], "load_model_large() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_large"]], "load_new_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_new_model"]], "load_tensors() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_tensors"]], "load_vqa_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_vqa_model"]], "matching_points() (in module cropposts)": [[0, "cropposts.matching_points"]], "module": [[0, "module-colors"], [0, "module-cropposts"], [0, "module-display"], [0, "module-faces"], [0, "module-multimodal_search"], [0, "module-summary"], [0, "module-text"], [0, "module-utils"]], "multimodal_device (multimodal_search.multimodalsearch attribute)": [[0, "multimodal_search.MultimodalSearch.multimodal_device"]], "multimodal_search": [[0, "module-multimodal_search"]], "multimodal_search() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.multimodal_search"]], "parsing_images() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.parsing_images"]], "paste_image_and_comment() (in module cropposts)": [[0, "cropposts.paste_image_and_comment"]], "querys_processing() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.querys_processing"]], "read_and_process_images() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.read_and_process_images"]], "read_and_process_images_itm() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.read_and_process_images_itm"]], "read_img() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.read_img"]], "remove_linebreaks() (text.textdetector method)": [[0, "text.TextDetector.remove_linebreaks"]], "resize_img() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.resize_img"]], "resources (utils.downloadresource attribute)": [[0, "utils.DownloadResource.resources"]], "rgb2name() (colors.colordetector method)": [[0, "colors.ColorDetector.rgb2name"]], "run_server() (display.analysisexplorer method)": [[0, "display.AnalysisExplorer.run_server"]], "save_tensors() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.save_tensors"]], "set_keys() (colors.colordetector method)": [[0, "colors.ColorDetector.set_keys"]], "set_keys() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.set_keys"]], "set_keys() (text.textdetector method)": [[0, "text.TextDetector.set_keys"]], "set_keys() (utils.analysismethod method)": [[0, "utils.AnalysisMethod.set_keys"]], "show_results() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.show_results"]], "summary": [[0, "module-summary"]], "text": [[0, "module-text"]], "text_ner() (text.textdetector method)": [[0, "text.TextDetector.text_ner"]], "text_sentiment_transformers() (text.textdetector method)": [[0, "text.TextDetector.text_sentiment_transformers"]], "text_summary() (text.textdetector method)": [[0, "text.TextDetector.text_summary"]], "translate_text() (text.textdetector method)": [[0, "text.TextDetector.translate_text"]], "update_picture() (display.analysisexplorer method)": [[0, "display.AnalysisExplorer.update_picture"]], "upload_model_blip2_coco() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.upload_model_blip2_coco"]], "upload_model_blip_base() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.upload_model_blip_base"]], "upload_model_blip_large() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.upload_model_blip_large"]], "utils": [[0, "module-utils"]], "wears_mask() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.wears_mask"]]}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"1. First, install tensorflow (https://www.tensorflow.org/install/pip)": [[7, "first-install-tensorflow-https-www-tensorflow-org-install-pip"]], "2. Second, install pytorch": [[7, "second-install-pytorch"]], "3. After we prepared right environment we can install the ammico package": [[7, "after-we-prepared-right-environment-we-can-install-the-ammico-package"]], "AMMICO - AI Media and Misinformation Content Analysis Tool": [[7, "ammico-ai-media-and-misinformation-content-analysis-tool"]], "AMMICO Demonstration Notebook": [[5, "AMMICO-Demonstration-Notebook"]], "AMMICO package modules": [[4, "ammico-package-modules"]], "BLIP2 models": [[5, "BLIP2-models"]], "Color analysis of pictures": [[5, "Color-analysis-of-pictures"]], "Color/hue detection": [[7, "color-hue-detection"]], "Compatibility problems solving": [[7, "compatibility-problems-solving"]], "Content extraction": [[7, "content-extraction"]], "Contents:": [[2, null]], "Crop posts module": [[6, "Crop-posts-module"]], "Cropping of posts": [[7, "cropping-of-posts"]], "Detection of faces and facial expression analysis": [[5, "Detection-of-faces-and-facial-expression-analysis"]], "Emotion recognition": [[7, "emotion-recognition"]], "FAQ": [[7, "faq"]], "Features": [[7, "features"]], "Formulate your search queries": [[5, "Formulate-your-search-queries"]], "Further detector modules": [[5, "Further-detector-modules"]], "Image Multimodal Search": [[5, "Image-Multimodal-Search"]], "Image summary and query": [[5, "Image-summary-and-query"]], "Import the ammico package.": [[5, "Import-the-ammico-package."]], "Improve the search results": [[5, "Improve-the-search-results"]], "Indexing and extracting features from images in selected folder": [[5, "Indexing-and-extracting-features-from-images-in-selected-folder"]], "Indices and tables": [[2, "indices-and-tables"]], "Installation": [[7, "installation"]], "Instructions how to generate and enable a google Cloud Vision API key": [[1, "instructions-how-to-generate-and-enable-a-google-cloud-vision-api-key"], [8, "instructions-how-to-generate-and-enable-a-google-cloud-vision-api-key"]], "License": [[3, "license"]], "Micromamba": [[7, "micromamba"]], "Save search results to csv": [[5, "Save-search-results-to-csv"]], "Step 0: Create and set a Google Cloud Vision Key": [[5, "Step-0:-Create-and-set-a-Google-Cloud-Vision-Key"]], "Step 1: Read your data into AMMICO": [[5, "Step-1:-Read-your-data-into-AMMICO"]], "Step 2: Inspect the input files using the graphical user interface": [[5, "Step-2:-Inspect-the-input-files-using-the-graphical-user-interface"]], "Step 3: Analyze all images": [[5, "Step-3:-Analyze-all-images"]], "Step 4: Convert analysis output to pandas dataframe and write csv": [[5, "Step-4:-Convert-analysis-output-to-pandas-dataframe-and-write-csv"]], "Text extraction": [[7, "text-extraction"]], "The detector modules": [[5, "The-detector-modules"]], "Usage": [[7, "usage"]], "Use a test dataset": [[5, "Use-a-test-dataset"]], "Welcome to AMMICO\u2019s documentation!": [[2, "welcome-to-ammico-s-documentation"]], "What happens if I don\u2019t have internet access - can I still use ammico?": [[7, "what-happens-if-i-don-t-have-internet-access-can-i-still-use-ammico"]], "What happens to the images that are sent to google Cloud Vision?": [[7, "what-happens-to-the-images-that-are-sent-to-google-cloud-vision"]], "What happens to the text that is sent to google Translate?": [[7, "what-happens-to-the-text-that-is-sent-to-google-translate"]], "Windows": [[7, "windows"]], "color_analysis module": [[0, "module-colors"]], "cropposts module": [[0, "module-cropposts"]], "display module": [[0, "module-display"]], "faces module": [[0, "module-faces"]], "multimodal search module": [[0, "module-multimodal_search"]], "summary module": [[0, "module-summary"]], "text module": [[0, "module-text"]], "utils module": [[0, "module-utils"]]}, "docnames": ["ammico", "create_API_key_link", "index", "license_link", "modules", "notebooks/DemoNotebook_ammico", "notebooks/Example cropposts", "readme_link", "set_up_credentials"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["ammico.rst", "create_API_key_link.md", "index.rst", "license_link.md", "modules.rst", "notebooks/DemoNotebook_ammico.ipynb", "notebooks/Example cropposts.ipynb", "readme_link.md", "set_up_credentials.md"], "indexentries": {"all_allowed_model_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.all_allowed_model_types", false]], "allowed_analysis_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.allowed_analysis_types", false]], "allowed_model_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.allowed_model_types", false]], "allowed_new_model_types (summary.summarydetector attribute)": [[0, "summary.SummaryDetector.allowed_new_model_types", false]], "ammico_prefetch_models() (in module utils)": [[0, "utils.ammico_prefetch_models", false]], "analyse_image() (colors.colordetector method)": [[0, "colors.ColorDetector.analyse_image", false]], "analyse_image() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.analyse_image", false]], "analyse_image() (summary.summarydetector method)": [[0, "summary.SummaryDetector.analyse_image", false]], "analyse_image() (text.textdetector method)": [[0, "text.TextDetector.analyse_image", false]], "analyse_image() (utils.analysismethod method)": [[0, "utils.AnalysisMethod.analyse_image", false]], "analyse_questions() (summary.summarydetector method)": [[0, "summary.SummaryDetector.analyse_questions", false]], "analyse_summary() (summary.summarydetector method)": [[0, "summary.SummaryDetector.analyse_summary", false]], "analyse_topic() (text.postprocesstext method)": [[0, "text.PostprocessText.analyse_topic", false]], "analysisexplorer (class in display)": [[0, "display.AnalysisExplorer", false]], "analysismethod (class in utils)": [[0, "utils.AnalysisMethod", false]], "analyze_single_face() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.analyze_single_face", false]], "append_data_to_dict() (in module utils)": [[0, "utils.append_data_to_dict", false]], "check_for_missing_keys() (in module utils)": [[0, "utils.check_for_missing_keys", false]], "check_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.check_model", false]], "clean_subdict() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.clean_subdict", false]], "clean_text() (text.textdetector method)": [[0, "text.TextDetector.clean_text", false]], "colordetector (class in colors)": [[0, "colors.ColorDetector", false]], "colors": [[0, "module-colors", false]], "compute_crop_corner() (in module cropposts)": [[0, "cropposts.compute_crop_corner", false]], "compute_gradcam_batch() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.compute_gradcam_batch", false]], "crop_image_from_post() (in module cropposts)": [[0, "cropposts.crop_image_from_post", false]], "crop_media_posts() (in module cropposts)": [[0, "cropposts.crop_media_posts", false]], "crop_posts_from_refs() (in module cropposts)": [[0, "cropposts.crop_posts_from_refs", false]], "crop_posts_image() (in module cropposts)": [[0, "cropposts.crop_posts_image", false]], "cropposts": [[0, "module-cropposts", false]], "deepface_symlink_processor() (in module faces)": [[0, "faces.deepface_symlink_processor", false]], "display": [[0, "module-display", false]], "downloadresource (class in utils)": [[0, "utils.DownloadResource", false]], "draw_matches() (in module cropposts)": [[0, "cropposts.draw_matches", false]], "dump_df() (in module utils)": [[0, "utils.dump_df", false]], "emotiondetector (class in faces)": [[0, "faces.EmotionDetector", false]], "extract_image_features_basic() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_image_features_basic", false]], "extract_image_features_blip2() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_image_features_blip2", false]], "extract_image_features_clip() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_image_features_clip", false]], "extract_text_features() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.extract_text_features", false]], "faces": [[0, "module-faces", false]], "facial_expression_analysis() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.facial_expression_analysis", false]], "find_files() (in module utils)": [[0, "utils.find_files", false]], "get() (utils.downloadresource method)": [[0, "utils.DownloadResource.get", false]], "get_att_map() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.get_att_map", false]], "get_color_table() (in module utils)": [[0, "utils.get_color_table", false]], "get_dataframe() (in module utils)": [[0, "utils.get_dataframe", false]], "get_pathes_from_query() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.get_pathes_from_query", false]], "get_text_df() (text.postprocesstext method)": [[0, "text.PostprocessText.get_text_df", false]], "get_text_dict() (text.postprocesstext method)": [[0, "text.PostprocessText.get_text_dict", false]], "get_text_from_image() (text.textdetector method)": [[0, "text.TextDetector.get_text_from_image", false]], "image_text_match_reordering() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.image_text_match_reordering", false]], "initialize_dict() (in module utils)": [[0, "utils.initialize_dict", false]], "is_interactive() (in module utils)": [[0, "utils.is_interactive", false]], "iterable() (in module utils)": [[0, "utils.iterable", false]], "itm_text_precessing() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.itm_text_precessing", false]], "kp_from_matches() (in module cropposts)": [[0, "cropposts.kp_from_matches", false]], "load_feature_extractor_model_albef() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_albef", false]], "load_feature_extractor_model_blip() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_blip", false]], "load_feature_extractor_model_blip2() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_blip2", false]], "load_feature_extractor_model_clip_base() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_clip_base", false]], "load_feature_extractor_model_clip_vitl14() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_clip_vitl14", false]], "load_feature_extractor_model_clip_vitl14_336() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_feature_extractor_model_clip_vitl14_336", false]], "load_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model", false]], "load_model_base() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_base", false]], "load_model_base_blip2_opt_caption_coco_opt67b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b", false]], "load_model_base_blip2_opt_pretrain_opt67b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_base_blip2_opt_pretrain_opt67b", false]], "load_model_blip2_opt_caption_coco_opt27b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_opt_caption_coco_opt27b", false]], "load_model_blip2_opt_pretrain_opt27b() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_opt_pretrain_opt27b", false]], "load_model_blip2_t5_caption_coco_flant5xl() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl", false]], "load_model_blip2_t5_pretrain_flant5xl() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_t5_pretrain_flant5xl", false]], "load_model_blip2_t5_pretrain_flant5xxl() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl", false]], "load_model_large() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_model_large", false]], "load_new_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_new_model", false]], "load_tensors() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.load_tensors", false]], "load_vqa_model() (summary.summarydetector method)": [[0, "summary.SummaryDetector.load_vqa_model", false]], "matching_points() (in module cropposts)": [[0, "cropposts.matching_points", false]], "module": [[0, "module-colors", false], [0, "module-cropposts", false], [0, "module-display", false], [0, "module-faces", false], [0, "module-multimodal_search", false], [0, "module-summary", false], [0, "module-text", false], [0, "module-utils", false]], "multimodal_device (multimodal_search.multimodalsearch attribute)": [[0, "multimodal_search.MultimodalSearch.multimodal_device", false]], "multimodal_search": [[0, "module-multimodal_search", false]], "multimodal_search() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.multimodal_search", false]], "multimodalsearch (class in multimodal_search)": [[0, "multimodal_search.MultimodalSearch", false]], "parsing_images() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.parsing_images", false]], "paste_image_and_comment() (in module cropposts)": [[0, "cropposts.paste_image_and_comment", false]], "postprocesstext (class in text)": [[0, "text.PostprocessText", false]], "querys_processing() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.querys_processing", false]], "read_and_process_images() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.read_and_process_images", false]], "read_and_process_images_itm() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.read_and_process_images_itm", false]], "read_csv() (text.textanalyzer method)": [[0, "text.TextAnalyzer.read_csv", false]], "read_img() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.read_img", false]], "remove_linebreaks() (text.textdetector method)": [[0, "text.TextDetector.remove_linebreaks", false]], "resize_img() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.resize_img", false]], "resources (utils.downloadresource attribute)": [[0, "utils.DownloadResource.resources", false]], "rgb2name() (colors.colordetector method)": [[0, "colors.ColorDetector.rgb2name", false]], "run_server() (display.analysisexplorer method)": [[0, "display.AnalysisExplorer.run_server", false]], "save_tensors() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.save_tensors", false]], "set_keys() (colors.colordetector method)": [[0, "colors.ColorDetector.set_keys", false]], "set_keys() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.set_keys", false]], "set_keys() (text.textdetector method)": [[0, "text.TextDetector.set_keys", false]], "set_keys() (utils.analysismethod method)": [[0, "utils.AnalysisMethod.set_keys", false]], "show_results() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.show_results", false]], "summary": [[0, "module-summary", false]], "summarydetector (class in summary)": [[0, "summary.SummaryDetector", false]], "text": [[0, "module-text", false]], "text_ner() (text.textdetector method)": [[0, "text.TextDetector.text_ner", false]], "text_sentiment_transformers() (text.textdetector method)": [[0, "text.TextDetector.text_sentiment_transformers", false]], "text_summary() (text.textdetector method)": [[0, "text.TextDetector.text_summary", false]], "textanalyzer (class in text)": [[0, "text.TextAnalyzer", false]], "textdetector (class in text)": [[0, "text.TextDetector", false]], "translate_text() (text.textdetector method)": [[0, "text.TextDetector.translate_text", false]], "update_picture() (display.analysisexplorer method)": [[0, "display.AnalysisExplorer.update_picture", false]], "upload_model_blip2_coco() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.upload_model_blip2_coco", false]], "upload_model_blip_base() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.upload_model_blip_base", false]], "upload_model_blip_large() (multimodal_search.multimodalsearch method)": [[0, "multimodal_search.MultimodalSearch.upload_model_blip_large", false]], "utils": [[0, "module-utils", false]], "wears_mask() (faces.emotiondetector method)": [[0, "faces.EmotionDetector.wears_mask", false]]}, "objects": {"": [[0, 0, 0, "-", "colors"], [0, 0, 0, "-", "cropposts"], [0, 0, 0, "-", "display"], [0, 0, 0, "-", "faces"], [0, 0, 0, "-", "multimodal_search"], [0, 0, 0, "-", "summary"], [0, 0, 0, "-", "text"], [0, 0, 0, "-", "utils"]], "colors": [[0, 1, 1, "", "ColorDetector"]], "colors.ColorDetector": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "rgb2name"], [0, 2, 1, "", "set_keys"]], "cropposts": [[0, 3, 1, "", "compute_crop_corner"], [0, 3, 1, "", "crop_image_from_post"], [0, 3, 1, "", "crop_media_posts"], [0, 3, 1, "", "crop_posts_from_refs"], [0, 3, 1, "", "crop_posts_image"], [0, 3, 1, "", "draw_matches"], [0, 3, 1, "", "kp_from_matches"], [0, 3, 1, "", "matching_points"], [0, 3, 1, "", "paste_image_and_comment"]], "display": [[0, 1, 1, "", "AnalysisExplorer"]], "display.AnalysisExplorer": [[0, 2, 1, "", "run_server"], [0, 2, 1, "", "update_picture"]], "faces": [[0, 1, 1, "", "EmotionDetector"], [0, 3, 1, "", "deepface_symlink_processor"]], "faces.EmotionDetector": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "analyze_single_face"], [0, 2, 1, "", "clean_subdict"], [0, 2, 1, "", "facial_expression_analysis"], [0, 2, 1, "", "set_keys"], [0, 2, 1, "", "wears_mask"]], "multimodal_search": [[0, 1, 1, "", "MultimodalSearch"]], "multimodal_search.MultimodalSearch": [[0, 2, 1, "", "compute_gradcam_batch"], [0, 2, 1, "", "extract_image_features_basic"], [0, 2, 1, "", "extract_image_features_blip2"], [0, 2, 1, "", "extract_image_features_clip"], [0, 2, 1, "", "extract_text_features"], [0, 2, 1, "", "get_att_map"], [0, 2, 1, "", "get_pathes_from_query"], [0, 2, 1, "", "image_text_match_reordering"], [0, 2, 1, "", "itm_text_precessing"], [0, 2, 1, "", "load_feature_extractor_model_albef"], [0, 2, 1, "", "load_feature_extractor_model_blip"], [0, 2, 1, "", "load_feature_extractor_model_blip2"], [0, 2, 1, "", "load_feature_extractor_model_clip_base"], [0, 2, 1, "", "load_feature_extractor_model_clip_vitl14"], [0, 2, 1, "", "load_feature_extractor_model_clip_vitl14_336"], [0, 2, 1, "", "load_tensors"], [0, 4, 1, "", "multimodal_device"], [0, 2, 1, "", "multimodal_search"], [0, 2, 1, "", "parsing_images"], [0, 2, 1, "", "querys_processing"], [0, 2, 1, "", "read_and_process_images"], [0, 2, 1, "", "read_and_process_images_itm"], [0, 2, 1, "", "read_img"], [0, 2, 1, "", "resize_img"], [0, 2, 1, "", "save_tensors"], [0, 2, 1, "", "show_results"], [0, 2, 1, "", "upload_model_blip2_coco"], [0, 2, 1, "", "upload_model_blip_base"], [0, 2, 1, "", "upload_model_blip_large"]], "summary": [[0, 1, 1, "", "SummaryDetector"]], "summary.SummaryDetector": [[0, 4, 1, "", "all_allowed_model_types"], [0, 4, 1, "", "allowed_analysis_types"], [0, 4, 1, "", "allowed_model_types"], [0, 4, 1, "", "allowed_new_model_types"], [0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "analyse_questions"], [0, 2, 1, "", "analyse_summary"], [0, 2, 1, "", "check_model"], [0, 2, 1, "", "load_model"], [0, 2, 1, "", "load_model_base"], [0, 2, 1, "", "load_model_base_blip2_opt_caption_coco_opt67b"], [0, 2, 1, "", "load_model_base_blip2_opt_pretrain_opt67b"], [0, 2, 1, "", "load_model_blip2_opt_caption_coco_opt27b"], [0, 2, 1, "", "load_model_blip2_opt_pretrain_opt27b"], [0, 2, 1, "", "load_model_blip2_t5_caption_coco_flant5xl"], [0, 2, 1, "", "load_model_blip2_t5_pretrain_flant5xl"], [0, 2, 1, "", "load_model_blip2_t5_pretrain_flant5xxl"], [0, 2, 1, "", "load_model_large"], [0, 2, 1, "", "load_new_model"], [0, 2, 1, "", "load_vqa_model"]], "text": [[0, 1, 1, "", "PostprocessText"], [0, 1, 1, "", "TextAnalyzer"], [0, 1, 1, "", "TextDetector"]], "text.PostprocessText": [[0, 2, 1, "", "analyse_topic"], [0, 2, 1, "", "get_text_df"], [0, 2, 1, "", "get_text_dict"]], "text.TextAnalyzer": [[0, 2, 1, "", "read_csv"]], "text.TextDetector": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "clean_text"], [0, 2, 1, "", "get_text_from_image"], [0, 2, 1, "", "remove_linebreaks"], [0, 2, 1, "", "set_keys"], [0, 2, 1, "", "text_ner"], [0, 2, 1, "", "text_sentiment_transformers"], [0, 2, 1, "", "text_summary"], [0, 2, 1, "", "translate_text"]], "utils": [[0, 1, 1, "", "AnalysisMethod"], [0, 1, 1, "", "DownloadResource"], [0, 3, 1, "", "ammico_prefetch_models"], [0, 3, 1, "", "append_data_to_dict"], [0, 3, 1, "", "check_for_missing_keys"], [0, 3, 1, "", "dump_df"], [0, 3, 1, "", "find_files"], [0, 3, 1, "", "get_color_table"], [0, 3, 1, "", "get_dataframe"], [0, 3, 1, "", "initialize_dict"], [0, 3, 1, "", "is_interactive"], [0, 3, 1, "", "iterable"]], "utils.AnalysisMethod": [[0, 2, 1, "", "analyse_image"], [0, 2, 1, "", "set_keys"]], "utils.DownloadResource": [[0, 2, 1, "", "get"], [0, 4, 1, "", "resources"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "terms": {"": 5, "0": [0, 2, 7], "00": 6, "03": 5, "1": [0, 1, 2, 8], "10": [5, 6, 7], "100": [0, 5, 6], "1000": [1, 8], "11": 7, "12": [5, 7], "14": 0, "15": [5, 6], "16": 5, "163": 7, "19": 0, "1976": 0, "2": [0, 2], "20": [0, 5], "2022": [3, 7], "2023": 5, "20gb": 5, "23": 7, "240": 0, "240p": 0, "27": 5, "28": 5, "3": [0, 2], "30": [0, 5], "336": 0, "35": 5, "3_non": 5, "4": [2, 7], "5": [0, 5], "50": [0, 1, 5, 8], "5_clip_base_saved_features_imag": 5, "6": [0, 5, 7], "60gb": 5, "61": [5, 6], "7": 7, "7b": [0, 5], "8": 7, "8050": 0, "8055": 5, "8057": 5, "9": 0, "981aa55a3b13": 5, "A": [0, 3, 5], "AND": 3, "AS": 3, "And": 5, "BE": 3, "BUT": 3, "Be": 7, "But": 5, "FOR": 3, "For": [5, 7], "IN": 3, "If": [0, 5, 6, 7], "In": [1, 5, 7, 8], "It": [1, 5, 6, 7, 8], "NO": 3, "NOT": 3, "No": 5, "OF": 3, "OR": 3, "One": 0, "Or": [1, 5, 8], "THE": 3, "TO": 3, "That": 5, "The": [0, 1, 2, 3, 6, 7, 8], "Then": 5, "There": 7, "These": [0, 5, 7], "To": [0, 5, 7], "WITH": 3, "With": 5, "_": 5, "__file__": 7, "_saved_features_imag": 5, "a100": 5, "a4f8f3": 5, "ab": 5, "about": [0, 5, 7], "abov": [3, 5, 7], "abus": 7, "access": 2, "accord": 7, "account": [1, 7, 8], "accur": [5, 7], "action": 3, "activ": 7, "ad": 5, "adapt": 5, "add": [5, 7], "addendum": 7, "addit": 0, "advanc": 5, "af0f99b": 5, "after": [1, 5, 8], "ag": [5, 7], "again": 5, "ai": 2, "albef": 5, "albef_feature_extractor": 0, "algorithm": [0, 5], "all": [0, 2, 3], "all_allowed_model_typ": [0, 4], "allow": [0, 5, 7], "allowed_analysis_typ": [0, 4], "allowed_model_typ": [0, 4], "allowed_new_model_typ": [0, 4], "along": 5, "alreadi": 5, "also": [0, 5, 7], "altern": 5, "american": 5, "ammico": [0, 1, 6, 8], "ammico_data_hom": 5, "ammico_env": 7, "ammico_prefetch_model": [0, 4], "among": 5, "an": [0, 3, 5, 6, 7], "analis": 0, "analys": [0, 5, 7], "analyse_imag": [0, 4, 5], "analyse_quest": [0, 4], "analyse_summari": [0, 4], "analyse_text": [0, 5, 7], "analyse_top": [0, 4], "analysi": [0, 2], "analysis_explor": 5, "analysis_typ": [0, 5], "analysisexplor": [0, 4, 5], "analysismethod": [0, 4], "analyz": [0, 2, 7], "analyze_single_fac": [0, 4], "analyze_text": 0, "anger": 5, "angri": 5, "ani": [0, 1, 3, 5, 7, 8], "anoth": 7, "answer": [0, 5, 7], "api": [0, 2, 5, 7], "app": 5, "append": 0, "append_data_to_dict": [0, 4, 5], "appli": 5, "applic": 6, "approach": 5, "appropri": 0, "approxim": 5, "ar": [0, 2, 5, 6], "architectur": 0, "archiv": 6, "area": 0, "arg": 0, "argument": 5, "aris": 3, "around": [0, 7], "arrai": 0, "art": 7, "as_posix": [5, 6], "asian": 5, "ask": [0, 5], "assign": 5, "associ": [3, 5], "asyncbatchannotatefil": 7, "asyncbatchannotateimag": 7, "asynchron": 7, "att_map": 0, "attent": 0, "author": 3, "automat": [5, 7], "avail": [5, 7], "avif": [0, 5], "avoid": 7, "b": 5, "back": [0, 1, 8], "background": 5, "bar": 5, "base": [0, 5, 7], "base_coco": 0, "batch": [0, 6, 7], "batch_siz": [0, 5], "batchannotatefil": 7, "batchannotateimag": 7, "becaus": [0, 5], "bee": 0, "been": [1, 5, 8], "befor": [0, 5, 7], "being": 5, "below": [0, 5, 6, 7], "bert": 5, "bertop": 0, "best": [5, 7], "best_simularity_value_in_current_search": 5, "better": 5, "between": [0, 5, 7], "beyond": 0, "bigger": 5, "bill": [1, 8], "binari": 0, "bit": 5, "black": [0, 7], "blank": [1, 8], "blip": 5, "blip2": 0, "blip2_coco": [0, 5], "blip2_feature_extractor": 0, "blip2_image_text_match": 0, "blip2_opt_caption_coco_opt2": [0, 5], "blip2_opt_caption_coco_opt6": [0, 5], "blip2_opt_pretrain_opt2": [0, 5], "blip2_opt_pretrain_opt6": [0, 5], "blip2_t5_caption_coco_flant5xl": [0, 5], "blip2_t5_pretrain_flant5xl": [0, 5], "blip2_t5_pretrain_flant5xxl": [0, 5], "blip_bas": 5, "blip_capt": 0, "blip_feature_extractor": 0, "blip_image_text_match": 0, "blip_larg": 5, "blip_vqa": 0, "block": 0, "block_num": 0, "blue": [0, 7], "blur": 0, "bool": [0, 5], "both": [5, 7], "briefli": 7, "bring": [1, 8], "brown": [0, 7], "browser": [1, 8], "build": 7, "c": [0, 3, 7], "calcul": 5, "call": [5, 7], "callback": 0, "campaign": 5, "can": [0, 1, 2, 5, 6, 8], "capabl": 5, "caption": [0, 5, 7], "caption_coco_": 5, "caption_coco_flant5xl": 0, "caption_coco_opt2": 0, "caption_coco_opt6": 0, "card": 5, "care": 7, "carri": [5, 6, 7], "case": 5, "categor": [0, 6], "categori": 5, "cell": [5, 6], "chang": 5, "channel": 7, "charg": [1, 3, 8], "check": [0, 5, 6, 7], "check_for_missing_kei": [0, 4], "check_model": [0, 4], "checkpoint": 5, "choos": [5, 7], "chosen": 0, "cie": 0, "citi": 5, "claim": 3, "class": [0, 5], "classif": 0, "classifi": 7, "clean": [0, 5, 7], "clean_subdict": [0, 4], "clean_text": [0, 4], "cli": [0, 5], "click": [1, 5, 8], "clip_bas": 5, "clip_feature_extractor": 0, "clip_vitl14": 5, "clip_vitl14_336": 5, "closest": 0, "cloud": [0, 2], "cnn": 5, "coco": [0, 5], "code": [5, 6], "colab": [5, 6, 7], "colaboratori": [1, 8], "collect": 7, "color": [0, 2], "color_analysi": [2, 4], "color_bgr2rgb": 6, "colordetector": [0, 4, 5], "colorgram": [0, 5, 7], "colour": [5, 7], "column": [0, 7], "column_kei": 0, "com": [5, 6, 7], "combat": 7, "combin": 5, "come": 5, "command": 7, "comment": [0, 6, 7], "common": 0, "compat": 2, "complet": 5, "compli": 7, "compon": 7, "comput": [0, 1, 5, 8], "computation": 5, "compute_crop_corn": [0, 4], "compute_gradcam_batch": [0, 4], "conceal": 5, "conda": [5, 7], "conda_prefix": 7, "condit": 3, "confer": 5, "confid": 5, "conll03": 5, "connect": [3, 5, 7], "consequenti": 0, "consequential_quest": [0, 5], "consid": [0, 5], "consist": 5, "consol": [1, 8], "const_image_summari": 5, "constant": [0, 5], "contain": [0, 5, 7], "content": [5, 6], "context": 5, "contract": 3, "contrib": 6, "conveni": 5, "convert": [0, 2], "coordin": 0, "copi": 3, "copyright": 3, "corner": [0, 1, 8], "correct": [5, 7], "correspond": 5, "cosequential_quest": 5, "could": 5, "count": 5, "countri": 5, "cover": 5, "cpp": 7, "cpu": [0, 5], "creat": [0, 1, 2, 7, 8], "creation": 5, "crop": [0, 2, 5], "crop_dir": 6, "crop_image_from_post": [0, 4], "crop_media_post": [0, 4, 6], "crop_post": 0, "crop_posts_from_ref": [0, 4, 6], "crop_posts_imag": [0, 4], "crop_view": [0, 6], "croppost": [2, 4, 6, 7], "crpo": 6, "css3": 0, "csv": [0, 2, 7], "csv_path": 0, "cu11": 7, "cu118": 7, "cuda": [0, 5, 7], "cudatoolkit": 7, "cudnn": 7, "cudnn_path": 7, "current": [0, 1, 7, 8], "current_simularity_valu": 5, "cut": 0, "cv2": [0, 6], "cvtcolor": 6, "cyan": [0, 7], "d": [6, 7], "damag": 3, "dash": [0, 5], "dashboard": [1, 8], "data": [0, 2, 6, 7], "data_out": 5, "data_path": 5, "databas": 7, "datafram": [0, 2], "dataset": 2, "dbmdz": 5, "deactiv": 7, "deal": 3, "deepfac": [5, 7], "deepface_symlink_processor": [0, 4], "default": [0, 5], "defin": 5, "delet": 7, "delta": 0, "delta_e_method": 0, "demand": [0, 5], "demonstr": [2, 7], "depend": [5, 7], "depth": 7, "describ": 7, "descript": [5, 7], "descriptor": 0, "desir": 5, "detail": 5, "detect": [0, 2], "detector": [2, 7], "determin": 0, "determinist": 0, "deterministic_summari": 5, "develop": [5, 7], "devic": 0, "device_typ": [0, 5], "df": 5, "dict": [0, 5], "dictionari": [0, 5], "differ": [5, 6], "directli": [1, 5, 8], "directori": [0, 5], "dirnam": 7, "discard": 5, "disgust": 5, "disk": 7, "displai": [2, 4, 5], "distanc": 7, "distilbart": 5, "distilbert": 5, "distribut": 3, "dmatch": 0, "do": [3, 5, 7], "document": 3, "doe": [0, 5, 7], "doesn": 6, "dog": 5, "domin": 5, "don": 2, "done": [1, 5, 6, 7, 8], "dopamin": 5, "dot": [1, 8], "down": [1, 8], "download": [0, 1, 5, 7, 8], "downloadresourc": [0, 4], "draw_match": [0, 4], "drive": [1, 5, 6, 7, 8], "drop": [1, 8], "dropdown": 5, "due": [5, 6], "dump": [0, 5], "dump_df": [0, 4, 5], "dump_everi": 5, "dump_fil": 5, "e": [0, 7], "each": [0, 5], "easi": 5, "easier": 6, "easili": 5, "echo": 7, "either": [0, 5], "element": [5, 7], "emot": 5, "emotion_threshold": [0, 5], "emotiondetector": [0, 4, 5], "emotitiondetector": 5, "empti": [0, 5], "enabl": [2, 5, 7], "english": [0, 5, 7], "enter": [1, 8], "entiti": [0, 5, 7], "entity_typ": 5, "entri": 0, "enumer": 5, "env_var": 7, "environ": [0, 5], "equip": 5, "error": [0, 5, 7], "estim": 0, "etc": 7, "even": 5, "event": 3, "everi": 5, "everyth": 6, "ex": 7, "exampl": [5, 6], "exclud": 0, "execut": [5, 6], "exist": 5, "exist_ok": 5, "experiment": [5, 7], "explain": 5, "explicitli": 5, "explor": [0, 5], "export": [5, 7], "express": [0, 2, 3, 7], "ext": 0, "extens": [5, 7], "extra": 6, "extrac": 7, "extract": 0, "extract_image_features_bas": [0, 4], "extract_image_features_blip2": [0, 4], "extract_image_features_clip": [0, 4], "extract_text_featur": [0, 4], "f": 6, "f2482bf": 5, "face": [2, 4, 7], "facial": [0, 2, 7], "facial_expression_analysi": [0, 4], "failsaf": 7, "fals": [0, 5, 6], "faq": 2, "fast": 5, "fear": 5, "featur": [0, 2], "feature_extractor": 0, "features_image_stack": [0, 5], "features_text": 0, "few": [5, 7], "field": 0, "figsiz": 6, "figur": 6, "file": [0, 1, 2, 3, 6, 7, 8], "filelist": 0, "filenam": [0, 5], "filepath": 0, "fill": 5, "filter": [0, 5], "filter_number_of_imag": [0, 5], "filter_rel_error": [0, 5], "filter_val_limit": [0, 5], "final_h": 0, "find": [0, 5, 6, 7], "find_fil": [0, 4, 5, 6], "fine": [5, 6], "finetun": 5, "first": [0, 1, 5, 6, 8], "fit": 3, "flag": 5, "flake8": [5, 6], "flan": 0, "flant5": 5, "flant5xl": 5, "flant5xxl": 5, "flex": 5, "float": [0, 5], "folder": [1, 6, 7, 8], "follow": [1, 3, 5, 7, 8], "forg": 7, "form": [0, 5], "format": [0, 5], "found": [0, 5, 6, 7], "fraction": 5, "frame": 0, "framework": 7, "frankfurt": 5, "free": [0, 1, 3, 8], "frequent": 0, "from": [0, 1, 3, 6, 7, 8], "function": [0, 5], "furnish": 3, "further": [2, 7], "g": 7, "gate": 5, "gb": [5, 7], "gbq": 5, "gender": [5, 7], "gener": [0, 2, 5, 7], "get": [0, 1, 4, 5, 7, 8], "get_att_map": [0, 4], "get_color_t": [0, 4], "get_datafram": [0, 4, 5], "get_ipython": [5, 6], "get_pathes_from_queri": [0, 4], "get_text_df": [0, 4], "get_text_dict": [0, 4], "get_text_from_imag": [0, 4], "gif": [0, 5], "git": [5, 6], "github": [5, 6], "give": 5, "given": [0, 5, 6], "global": 0, "go": [1, 8], "googl": [0, 2, 6], "google_application_credenti": [5, 7], "googletran": [5, 7], "gpu": [5, 7], "gradcam": 0, "grant": 3, "graphic": 2, "green": [0, 7], "grei": [0, 7], "h_margin": 0, "ha": [1, 5, 8], "happen": 2, "happi": 5, "have": [2, 5], "head": [5, 6], "heat": 5, "heavi": 5, "held": 7, "here": [1, 5, 7, 8], "herebi": 3, "high": 5, "hold": 5, "holder": 3, "horizont": 0, "hostedtoolcach": 0, "hour": 7, "how": [2, 5], "howev": 5, "hpc": 5, "http": [5, 6], "hug": 7, "huggingfac": 5, "human": 5, "i": [0, 1, 2, 3, 5, 6, 8], "id": [0, 1, 5, 8], "ideal": 5, "identifi": 5, "ignor": [0, 6], "imag": [0, 1, 2, 6, 8], "image_df": 5, "image_dict": 5, "image_example_path": 5, "image_example_queri": 5, "image_gradcam_with_itm": [0, 5], "image_kei": [0, 5], "image_nam": [0, 5], "image_path": 0, "image_summary_detector": 5, "image_summary_vqa_detector": 5, "image_text_match_reord": [0, 4, 5], "images_tensor": 0, "img": [0, 5], "img1": 0, "img2": 0, "img_path": 0, "immedi": 7, "imperfect": 6, "implement": 5, "impli": 3, "import": [2, 6, 7], "importlib_resourc": [5, 6], "improp": 6, "improv": 7, "imread": 6, "imshow": 6, "includ": [0, 3, 5], "incompat": 5, "increment": 5, "index": [0, 2, 7], "indic": 0, "inform": [1, 6, 7, 8], "inherit": 0, "iniati": 5, "init": 5, "initi": [0, 5, 7], "initialize_dict": [0, 4], "input": [0, 2, 7], "insid": 5, "inspect": 2, "instal": [2, 5, 6], "instanc": 5, "instead": 5, "instruct": [2, 5, 7], "int": [0, 5], "intellig": 7, "intens": 5, "interact": [0, 5], "interfac": 2, "internet": 2, "ipynb": 7, "is_interact": [0, 4], "isdir": 6, "item": [5, 6], "iter": [0, 4], "itm": [0, 5], "itm_model": [0, 5], "itm_model_typ": 0, "itm_scor": 5, "itm_scores2": 0, "itm_text_precess": [0, 4], "its": 7, "iulusoi": 5, "jpeg": [0, 5], "jpg": [0, 5], "json": [1, 5, 7, 8], "jupyt": [1, 5, 8], "just": [0, 5, 7], "k": 5, "keep": 6, "kei": [0, 2, 7], "keypoint": 0, "keyword": [5, 7], "kind": 3, "kp1": 0, "kp2": 0, "kp_from_match": [0, 4], "kwarg": 0, "l": [0, 5], "languag": [0, 5, 7], "larg": [0, 5, 7], "large_coco": 0, "largest": 5, "later": 0, "latest": 6, "latter": [5, 7], "launch": 5, "lavi": [0, 5, 7], "ld_library_path": 7, "left": [1, 5, 8], "lemma": 7, "len": 5, "length": 0, "less": 5, "liabil": 3, "liabl": 3, "lib": [0, 7], "librari": [0, 5, 6, 7], "licens": 2, "lida": 5, "like": [1, 5, 8], "likelihood": 5, "limit": [0, 3, 5, 6], "line": 6, "linebreak": [0, 5], "list": [0, 1, 5, 8], "list_of_quest": [0, 5], "live": 7, "llm": 5, "load": [0, 5, 6], "load_dataset": 5, "load_feature_extractor_model_albef": [0, 4], "load_feature_extractor_model_blip": [0, 4], "load_feature_extractor_model_blip2": [0, 4], "load_feature_extractor_model_clip_bas": [0, 4], "load_feature_extractor_model_clip_vitl14": [0, 4], "load_feature_extractor_model_clip_vitl14_336": [0, 4], "load_model": [0, 4], "load_model_bas": [0, 4], "load_model_base_blip2_opt_caption_coco_opt67b": [0, 4], "load_model_base_blip2_opt_pretrain_opt67b": [0, 4], "load_model_blip2_opt_caption_coco_opt27b": [0, 4], "load_model_blip2_opt_pretrain_opt27b": [0, 4], "load_model_blip2_t5_caption_coco_flant5xl": [0, 4], "load_model_blip2_t5_pretrain_flant5xl": [0, 4], "load_model_blip2_t5_pretrain_flant5xxl": [0, 4], "load_model_larg": [0, 4], "load_new_model": [0, 4], "load_tensor": [0, 4], "load_vqa_model": [0, 4], "local": [5, 7], "locat": [5, 7], "log": 7, "login": 5, "look": [0, 1, 5, 6, 8], "loop": 5, "lower": 5, "m": 7, "machin": [5, 7], "made": 7, "mai": [5, 7], "main": [5, 7], "make": [1, 5, 7, 8], "man": 5, "manag": [1, 8], "mani": 5, "manual": 6, "map": [0, 5], "margin": 0, "mask": [0, 5, 7], "match": [0, 5, 6, 7], "matching_point": [0, 4], "matplotlib": 6, "maximum": [0, 5], "mean": 5, "media": [0, 2, 5, 6], "medicin": 5, "memori": [5, 7], "menu": [1, 5, 8], "merchant": 3, "merg": [0, 3], "merge_color": 0, "messag": 5, "metadata": 7, "method": [0, 5], "metric": [0, 7], "microsoft": 7, "might": 0, "min_match": 0, "minimum": [0, 5], "misinform": [2, 5], "miss": 0, "mit": 3, "mkdir": [5, 7], "model": [0, 7], "model_nam": [0, 5], "model_old": 0, "model_typ": [0, 5], "modifi": 3, "modul": [2, 7], "moment": 5, "month": [1, 8], "moral": 6, "more": [1, 5, 7, 8], "most": [0, 5], "mount": [5, 6], "msvc": 7, "much": 5, "multi_features_stack": 0, "multimod": [2, 4, 7], "multimodal_devic": [0, 4], "multimodal_search": [0, 4, 5, 7], "multimodalsearch": [0, 4, 5], "multipl": 5, "multiple_fac": 5, "must": 7, "mv": 6, "my_obj": 5, "mydict": 0, "mydriv": 5, "n": [0, 5, 7], "n_color": 0, "name": [0, 1, 5, 6, 7, 8], "natur": 0, "ndarrai": 0, "necessari": [5, 7], "need": [0, 5, 7], "need_grad_cam": [0, 5], "neg": 5, "ner": 5, "nest": [0, 5], "neutral": 5, "new": [0, 1, 5, 7, 8], "next": 5, "nn": 0, "no_fac": 5, "non": 0, "nondeterministic_summari": 0, "none": [0, 5], "noninfring": 3, "noqa": [5, 6], "note": 5, "notebook": [1, 2, 6, 7, 8], "notic": 3, "now": [1, 5, 6, 8], "np": 0, "num": 5, "number": [0, 5, 7], "number_of_imag": 5, "numer": 5, "numpi": [0, 7], "nvidia": 7, "o": [5, 6, 7], "obj": 5, "object": [0, 5], "obtain": 3, "occur": 0, "off": 0, "offlin": 7, "old": 0, "onc": 5, "one": [0, 5, 7], "ones": 5, "onli": [0, 5, 6, 7], "onlin": 7, "open": 5, "opencv": 6, "oper": 7, "opt": [0, 5], "optim": 5, "option": [0, 5, 7], "orang": [0, 7], "orbax": 5, "order": [5, 7], "origin": [0, 5, 6], "other": [0, 3, 5, 7], "otherwis": [0, 3, 5], "our": [5, 7], "out": [1, 3, 5, 6, 7, 8], "outdict": 5, "output": [0, 2], "outsid": 5, "overal": 5, "overlap": 0, "own": 5, "p": [0, 7], "packag": [0, 2, 6], "page": [1, 2, 7, 8], "paid": 5, "panda": 2, "paper": 7, "paramet": [0, 5], "parent": 5, "pars": 0, "parsing_imag": [0, 4, 5], "part": [0, 6, 7], "parti": 7, "partial": 5, "particular": 3, "pass": 5, "past": 0, "paste_image_and_com": [0, 4], "path": [0, 5, 6], "path_post": 6, "path_ref": 6, "path_to_load_tensor": [0, 5], "path_to_save_tensor": [0, 5], "pathlib": 5, "patient": 5, "pattern": [0, 5], "peopl": 5, "per": [1, 8], "percentag": [0, 5, 7], "perform": [0, 5, 7], "period": 7, "permiss": 3, "permit": 3, "persist": 7, "person": [3, 5, 7], "pick": [1, 8], "pictur": [0, 2], "pil": 0, "pin": 6, "pink": [0, 7], "pip": [5, 6], "pipelin": [0, 5, 7], "pkg": 6, "place": [1, 5, 7, 8], "pleas": [5, 6, 7], "plot": 6, "plt": 6, "plt_crop": [0, 6], "plt_imag": [0, 6], "plt_match": [0, 6], "png": [0, 5, 6], "pngimageplugin": 0, "point": 0, "polar": 7, "politician": 5, "pooch": 0, "pop": [1, 8], "port": [0, 5], "portion": 3, "posit": [0, 5], "possibl": [5, 7], "post": [0, 2, 5], "postprocesstext": [0, 4], "pre": [5, 7], "predict": [5, 7], "prefetch": 0, "prefix": 0, "prepar": 5, "preprocessor": 0, "presenc": 7, "present": [0, 5], "preserv": 5, "press": 5, "pretrain": [0, 5], "pretrain_": 5, "pretrain_opt2": 0, "pretrain_opt6": 0, "prevent": [6, 7], "previou": 5, "primari": 5, "print": [6, 7], "prioriti": 7, "privat": [1, 5, 8], "probabl": 5, "problem": [0, 2], "process": [0, 1, 5, 7, 8], "product": 5, "progress": 5, "project": [1, 7, 8], "prompt": [1, 5, 8], "proper": 7, "proport": 0, "provid": [0, 3, 5, 6, 7], "pt": [0, 5], "public": 7, "publish": 3, "purpl": [0, 7], "purpos": [3, 5], "put": [0, 7], "py": [0, 7], "pycocotool": 7, "pyplot": 6, "python": [0, 1, 5, 6, 7, 8], "python3": 0, "q": 6, "qq": 6, "qqq": [5, 6], "queri": [0, 2, 7], "querys_process": [0, 4], "question": [0, 5, 7], "quit": 5, "race": [5, 7], "race_threshold": [0, 5], "ram": 5, "random": [0, 5], "random_se": [0, 5], "rank": 5, "raw_imag": 0, "raw_img": 0, "re": [5, 6, 7], "read": [0, 2], "read_and_process_imag": [0, 4], "read_and_process_images_itm": [0, 4], "read_csv": [0, 4], "read_img": [0, 4], "receiv": 7, "recogn": 7, "recognit": [0, 5], "recurs": [0, 5], "red": [0, 7], "reduc": [0, 5], "ref": 6, "ref_dir": 6, "ref_fil": [0, 6], "ref_view": [0, 6], "refer": [0, 1, 6, 8], "region": [0, 6], "regist": 0, "rel": 0, "relev": 5, "rememb": 5, "remot": 0, "remov": [0, 6, 7], "remove_linebreak": [0, 4], "reorder": 0, "report": 5, "repositori": 5, "represent": 5, "request": 7, "requir": [0, 5, 7], "rerun": 5, "resiz": 0, "resize_img": [0, 4], "resized_imag": 0, "resourc": [0, 4, 5], "respect": 5, "respons": 7, "restart": 5, "restrict": [3, 7], "result": [0, 7], "retinafac": [5, 7], "return": [0, 5, 7], "return_top": 0, "revis": 5, "revision_numb": [0, 5], "rf": 6, "rgb": 0, "rgb2name": [0, 4], "rgb_ref_view": 6, "rgb_view": 6, "right": [1, 3, 5, 8], "rl": 5, "rm": 6, "run": [0, 1, 5, 6, 7, 8], "run_serv": [0, 4, 5], "runtim": 5, "sad": 5, "same": [5, 6, 7], "sampl": [6, 7], "save": [0, 6], "save_crop_dir": [0, 6], "save_tensor": [0, 4], "saved_features_imag": 0, "saved_tensor": 0, "score": 0, "screen": [1, 8], "screenshot": [1, 8], "script": 7, "sdk": 7, "search": [1, 2, 4, 7, 8], "search_queri": [0, 5], "second": [0, 5], "section": 5, "see": [1, 5, 7, 8], "seed": [0, 5], "seem": 6, "select": [0, 1, 8], "self": 0, "sell": 3, "send": 7, "sent": 2, "sentiment": [0, 5, 7], "sentiment_scor": 5, "separ": 5, "sequenti": 5, "server": [0, 5], "servic": [1, 7, 8], "session": 5, "set": [0, 1, 2, 6, 7, 8], "set_kei": [0, 4], "setuptool": [5, 6], "seven": 5, "sever": [5, 7], "sh": 7, "shade": 0, "shall": 3, "share": 7, "short": 7, "shot": 5, "should": [0, 1, 5, 8], "show": [0, 1, 5, 6, 8], "show_result": [0, 4, 5], "showcas": 5, "shown": 5, "shuffel": 0, "shuffl": [0, 5], "sidebar": 5, "sift": 0, "sign": [1, 8], "signifi": [0, 5], "similar": [0, 5, 7], "simultan": 5, "sinc": 5, "singl": [0, 5], "site": 0, "size": [0, 5, 7], "skip": 5, "slightli": 5, "slower": 5, "small": 0, "smaller": [0, 5], "so": [0, 3, 5, 7], "social": [0, 5, 6, 7], "softwar": 3, "solv": 2, "some": [5, 6, 7], "someth": [1, 5, 6, 8], "sometim": [0, 5, 6, 7], "sort": 0, "sorted_list": [0, 5], "sourc": [5, 7], "space": 7, "spaci": [5, 7], "special": 5, "specif": [0, 5], "specifi": 5, "speech": 7, "spell": 7, "ssc": 3, "ssciwr": [5, 6], "sshleifer": 5, "sst": 5, "stack": 0, "start": 0, "state": 7, "step": [2, 6, 7], "still": 2, "store": [5, 7], "str": [0, 5, 6], "string": 5, "studio": 7, "style": 5, "subdict": [0, 5], "subdirectori": [0, 5], "subfold": 5, "subject": [3, 7], "sublicens": 3, "subsequ": 5, "substanti": 3, "substitut": 6, "subtract": 0, "suffix": 0, "suitabl": 5, "summar": 5, "summari": [2, 4, 7], "summary_and_quest": [0, 5], "summary_model": 0, "summary_vis_processor": 0, "summary_vqa_model": 0, "summary_vqa_model_new": 0, "summary_vqa_txt_processor": 0, "summary_vqa_txt_processors_new": 0, "summary_vqa_vis_processor": 0, "summary_vqa_vis_processors_new": 0, "summarydetector": [0, 4, 5], "sure": [1, 5, 8], "surpris": 5, "syntax": 5, "system": 0, "t": [2, 6], "t5": 0, "tab": 5, "tabl": 5, "take": [0, 5], "taken": [0, 5], "task": [5, 7], "temporarili": 7, "ten": 0, "tensor": [0, 5], "tensorflow": 5, "tesor": 0, "test": [2, 6], "text": [2, 4, 5, 6], "text_clean": [5, 7], "text_english": [0, 5, 7], "text_english_correct": 7, "text_input": [0, 5], "text_languag": [5, 7], "text_ner": [0, 4], "text_query_index": 0, "text_sentiment_transform": [0, 4], "text_summari": [0, 4, 5], "textanalyz": [0, 4], "textblob": 7, "textdetector": [0, 4, 5], "textual": 7, "tf": 5, "than": [1, 5, 8], "thei": [0, 5, 7], "them": 5, "therefor": 5, "thi": [0, 1, 3, 5, 6, 7, 8], "third": 7, "three": [1, 5, 8], "threshold": 5, "through": [0, 5], "thrown": 5, "thu": 5, "tiff": [0, 5], "time": [5, 7], "to_csv": 5, "togeth": 0, "toggl": 5, "token": [0, 7], "tokenized_text": 0, "tool": 2, "top": [1, 5, 8], "top1": 5, "topic": [0, 5, 7], "torch": [0, 7], "torchaudio": [5, 7], "torchdata": 5, "torchtext": 5, "torchvis": 7, "tort": 3, "total": 5, "tpu": 5, "tqdm": 5, "train": [0, 5], "transform": [0, 5, 7], "translat": [0, 2, 5], "translate_text": [0, 4], "true": [0, 5, 6, 7], "try": 5, "ttl": 7, "tune": 5, "tupl": 0, "two": [0, 5, 7], "txt_processor": [0, 5], "type": [0, 5, 6], "typic": 7, "ummary_and_quest": 5, "uncas": 5, "uncom": 5, "under": 7, "unecessari": 0, "uninstal": [5, 6], "union": 0, "unrecogn": [0, 7], "unrecogniz": 5, "unzip": 6, "up": [0, 1, 5, 7, 8], "updat": [0, 5], "update_pictur": [0, 4], "upload": [1, 7, 8], "upload_model_blip2_coco": [0, 4], "upload_model_blip_bas": [0, 4], "upload_model_blip_larg": [0, 4], "upon": 5, "url": 7, "us": [0, 1, 2, 3, 8], "usa": 5, "usag": 2, "use_csv": 0, "user": [2, 7], "util": [2, 4, 6], "v": 7, "v143": 7, "v2": 5, "v_margin": 0, "valu": [0, 5], "variabl": [5, 7], "veri": [5, 7], "version": [5, 6, 7], "vertic": [0, 1, 8], "via": 5, "video": 5, "view": [0, 6], "vis_processor": [0, 5], "vision": [0, 2], "visual": [0, 5, 7], "visual_input": 0, "visualstudio": 7, "vit": [0, 5], "vqa": [0, 5], "vram": 5, "vs_buildtool": 7, "wa": [0, 5, 7], "wai": [5, 6], "want": [5, 7], "warranti": 3, "we": [0, 5, 6], "wear": [0, 5, 7], "wears_mask": [0, 4, 5], "webp": [0, 5], "websit": 7, "well": 5, "wget": 6, "what": [2, 5], "when": [1, 5, 6, 7, 8], "where": [0, 1, 5, 7, 8], "whether": [0, 3], "which": [0, 5, 6, 7], "while": [0, 5], "white": [0, 7], "whitespac": 5, "whl": 7, "whole": 5, "whom": 3, "why": 5, "width": 0, "window": [1, 8], "wish": [1, 8], "without": [0, 3, 5, 7], "won": 7, "word": [0, 5, 7], "work": [0, 5, 6, 7], "world": 5, "worn": 5, "wrapper": 0, "write": [0, 2], "written": [0, 5], "wrong": 6, "x64": [0, 7], "x86": 7, "xl": 0, "xxl": 0, "y": [5, 6], "ye": 5, "yellow": [0, 7], "yet": 0, "you": [1, 5, 6, 7, 8], "your": [1, 2, 6, 7, 8], "zero": 5, "zip": 6}, "titles": ["text module", "Instructions how to generate and enable a google Cloud Vision API key", "Welcome to AMMICO\u2019s documentation!", "License", "AMMICO package modules", "AMMICO Demonstration Notebook", "Crop posts module", "AMMICO - AI Media and Misinformation Content Analysis Tool", "Instructions how to generate and enable a google Cloud Vision API key"], "titleterms": {"": 2, "0": 5, "1": [5, 7], "2": [5, 7], "3": [5, 7], "4": 5, "The": 5, "access": 7, "after": 7, "ai": 7, "all": 5, "ammico": [2, 4, 5, 7], "analysi": [5, 7], "analyz": 5, "api": [1, 8], "ar": 7, "blip2": 5, "can": 7, "cloud": [1, 5, 7, 8], "color": [5, 7], "color_analysi": 0, "compat": 7, "content": [2, 7], "convert": 5, "creat": 5, "crop": [6, 7], "croppost": 0, "csv": 5, "data": 5, "datafram": 5, "dataset": 5, "demonstr": 5, "detect": [5, 7], "detector": 5, "displai": 0, "document": 2, "don": 7, "emot": 7, "enabl": [1, 8], "environ": 7, "express": 5, "extract": [5, 7], "face": [0, 5], "facial": 5, "faq": 7, "featur": [5, 7], "file": 5, "first": 7, "folder": 5, "formul": 5, "from": 5, "further": 5, "gener": [1, 8], "googl": [1, 5, 7, 8], "graphic": 5, "happen": 7, "have": 7, "how": [1, 8], "http": 7, "hue": 7, "i": 7, "imag": [5, 7], "import": 5, "improv": 5, "index": 5, "indic": 2, "input": 5, "inspect": 5, "instal": 7, "instruct": [1, 8], "interfac": 5, "internet": 7, "kei": [1, 5, 8], "licens": 3, "media": 7, "micromamba": 7, "misinform": 7, "model": 5, "modul": [0, 4, 5, 6], "multimod": [0, 5], "notebook": 5, "org": 7, "output": 5, "packag": [4, 5, 7], "panda": 5, "pictur": 5, "pip": 7, "post": [6, 7], "prepar": 7, "problem": 7, "pytorch": 7, "queri": 5, "read": 5, "recognit": 7, "result": 5, "right": 7, "save": 5, "search": [0, 5], "second": 7, "select": 5, "sent": 7, "set": 5, "solv": 7, "step": 5, "still": 7, "summari": [0, 5], "t": 7, "tabl": 2, "tensorflow": 7, "test": 5, "text": [0, 7], "tool": 7, "translat": 7, "us": [5, 7], "usag": 7, "user": 5, "util": 0, "vision": [1, 5, 7, 8], "we": 7, "welcom": 2, "what": 7, "window": 7, "write": 5, "www": 7, "your": 5}})
\ No newline at end of file
diff --git a/build/html/set_up_credentials.html b/build/html/set_up_credentials.html
index f858a83..4b1cc36 100644
--- a/build/html/set_up_credentials.html
+++ b/build/html/set_up_credentials.html
@@ -16,7 +16,7 @@
         
         
         
-        
+