Этот коммит содержится в:
Inga Ulusoy 2023-05-02 12:59:51 +02:00
родитель 4ba8b43659
Коммит 1839e98107
5 изменённых файлов: 5 добавлений и 143 удалений

Просмотреть файл

@ -146,7 +146,9 @@ def crop_posts_image(
):
"""
get file lists from dir and sub dirs
ref_viewref_view for crop the posts images
ref_view ref_view for crop the posts images
view: posts image that need cropping
rte None - not cropped, or (crop_view, number of matches)
"""
@ -185,7 +187,7 @@ def crop_posts_image(
def get_file_list(dir, filelist, ext=None, convert_unix=True):
"""
get file lists from dir and sub dirs
dirroot dir for file lists
dir root dir for file lists
ext: file extension
rte File list
"""
@ -252,11 +254,9 @@ def crop_posts_from_files(
def test_crop_from_file():
# Load images
# view1 = np.array(Image.open("data/ref/ref-00.png")) / 255
# view2 = np.array(Image.open("data/napsa/100539_ben.png")) / 255
view1 = np.array(Image.open("data/ref/ref-06.png"))
view2 = np.array(Image.open("data/napsa/102956_eng.png"))
crop_view, match_num = crop_posts_image(view1, view2, plt_match=True, plt_crop=True)
crop_view, _ = crop_posts_image(view1, view2, plt_match=True, plt_crop=True)
cv2.imwrite("data/crop_100489_ind.png", crop_view)
@ -267,10 +267,3 @@ def test_crop_from_folder():
crop_posts_from_files(
ref_dir, crop_dir, save_crop_dir, plt_match=False, plt_crop=False
)
# do tests:
# test_crop_from_file()
# test_crop_from_folder()

Просмотреть файл

@ -1,127 +0,0 @@
{
"v9_4": {
"order": 169,
"variable_label": "4=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Person visible",
"variable_coding": "Bool",
"variable_comment": "Yes if there's someone shown",
"variable_mydict": "face",
"value_mydict": "Yes"
},
"v9_5a": {
"order": 170,
"variable_label": "5a=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "More than one person shown",
"variable_coding": "Bool",
"variable_comment": "Yes if there are several individuals who appear in the post (do not count profile pictures)",
"variable_mydict": "multiple_faces",
"value_mydict": "Yes"
},
"v9_5b": {
"order": 171,
"variable_label": "5b=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "How many people shown?",
"variable_coding": "Int",
"variable_comment": "If more than 15, put 99",
"variable_mydict": "no_faces",
"value_mydict": "0"
},
"v9_6": {
"order": 172,
"variable_label": "6=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Face fully visible",
"variable_coding": "Bool",
"variable_comment": "Yes if you can see all their face (no mask on)",
"variable_mydict": "wears_mask",
"value_mydict": "No"
},
"v9_7": {
"order": 173,
"variable_label": "7=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Face ONLY partially visible",
"variable_coding": "Bool",
"variable_comment": "Yes if you can only see part of their face, including when they are wearing a mask",
"variable_mydict": "wears_mask",
"value_mydict": "Yes"
},
"v9_8": {
"order": 174,
"variable_label": "8=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Facial positive expression",
"variable_coding": "Bool",
"variable_comment": "Yes if they display some kind of positive facial expression (smiling, happy, relieved, hopeful etc.)",
"variable_mydict": "emotion (category)",
"value_mydict": "Positive"
},
"v9_8a": {
"order": 175,
"variable_label": "8a=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Positive expression: happiness",
"variable_coding": "Bool",
"variable_comment": "Yes if they display happiness",
"variable_mydict": "emotion",
"value_mydict": "happy"
},
"v9_9": {
"order": 176,
"variable_label": "9=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Facial negative expression",
"variable_coding": "Bool",
"variable_comment": "Yes if they display some kind of negative facial expression (crying, showing ager, fear, disgust etc.)",
"variable_mydict": "emotion (category)",
"value_mydict": "Negative"
},
"v9_10": {
"order": 177,
"variable_label": "10=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Negative expression: anxiety",
"variable_coding": "Bool",
"variable_comment": "Yes if they show fear or anxiety. If you can't tell, choose No=0",
"variable_mydict": "emotion",
"value_mydict": "fear"
},
"v9_11": {
"order": 178,
"variable_label": "11=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Negative expression: anger",
"variable_coding": "Bool",
"variable_comment": "Yes if they show anger or outrage. If you can't tell, choose No=0",
"variable_mydict": "emotion",
"value_mydict": "angry"
},
"v9_12": {
"order": 179,
"variable_label": "12=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Negative expression: disgust",
"variable_coding": "Bool",
"variable_comment": "Yes if they show disgust. If you can't tell, choose No=0",
"variable_mydict": "emotion",
"value_mydict": "disgust"
},
"v9_13": {
"order": 180,
"variable_label": "13=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Negative expression: other, specify",
"variable_coding": "Bool",
"variable_comment": "Yes if they show any other negative emotion, please specify. If you can't tell, choose No=0",
"variable_mydict": "emotion",
"value_mydict": "sad"
},
"v9_13_text": {
"order": 181,
"variable_label": "13=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Negative expression: other, specify",
"variable_coding": "Str",
"variable_mydict": "emotion",
"value_mydict": ""
},
"v11_3": {
"order": 189,
"variable_label": "111_3=PICTURE_SPECIFIC_VisualONLY",
"variable_explanation": "Respect of the rules",
"variable_coding": "Bool",
"variable_comment": "Yes if the post shows mask wearing, vaccine taking, social distancing, any proof of respecting the rules",
"variable_mydict": "wears_mask",
"value_mydict": "Yes"
}
}

Просмотреть файл

@ -1,7 +1,5 @@
import cv2
import cvlib as cv
import numpy as np
from PIL import Image
def objects_from_cvlib(objects_list: list) -> dict:

Просмотреть файл

@ -1,6 +1,5 @@
import ammico.faces as fc
import json
import pytest
def test_analyse_faces(get_path):

Просмотреть файл

@ -113,7 +113,6 @@ class TextDetector(utils.AnalysisMethod):
self.subdict["text_english_correct"] = str(self.textblob.correct())
def sentiment_analysis(self):
# self.subdict["sentiment"] = self.doc._.blob.sentiment_assessments.assessments
# polarity is between [-1.0, 1.0]
self.subdict["polarity"] = self.doc._.blob.polarity
# subjectivity is a float within the range [0.0, 1.0]