зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 13:06:04 +02:00
added test, fixed dependencies
Этот коммит содержится в:
родитель
b0cfab05e9
Коммит
18ecf4888b
@ -28,7 +28,7 @@ def test_read_img():
|
||||
assert list(numpy.array(test_img)[257][34]) == [70, 66, 63]
|
||||
|
||||
|
||||
@pytest.mark.skipif(not cuda.is_available(), reason="model for gpu only")
|
||||
@pytest.mark.skipif(gpu_is_not_available, reason="model for gpu only")
|
||||
def test_load_feature_extractor_model_blip2():
|
||||
my_dict = {}
|
||||
multimodal_device = device("cuda" if cuda.is_available() else "cpu")
|
||||
@ -46,14 +46,12 @@ def test_load_feature_extractor_model_blip2():
|
||||
processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device)
|
||||
processed_text = txt_processor["eval"](test_querry)
|
||||
|
||||
with no_grad():
|
||||
with cuda.amp.autocast(enabled=(device != device("cpu"))):
|
||||
extracted_feature_img = model.extract_features(
|
||||
{"image": processed_pic, "text_input": ""}, mode="image"
|
||||
)
|
||||
extracted_feature_text = model.extract_features(
|
||||
{"image": "", "text_input": processed_text}, mode="text"
|
||||
)
|
||||
extracted_feature_img = model.extract_features(
|
||||
{"image": processed_pic, "text_input": ""}, mode="image"
|
||||
)
|
||||
extracted_feature_text = model.extract_features(
|
||||
{"image": "", "text_input": processed_text}, mode="text"
|
||||
)
|
||||
check_list_processed_pic = [
|
||||
-1.0039474964141846,
|
||||
-1.0039474964141846,
|
||||
@ -122,10 +120,13 @@ def test_load_feature_extractor_model_blip2():
|
||||
)
|
||||
|
||||
image_paths = [TEST_IMAGE_2, TEST_IMAGE_3]
|
||||
|
||||
raw_images, images_tensors = ms.MultimodalSearch.read_and_process_images(
|
||||
my_dict, image_paths, vis_processor
|
||||
)
|
||||
|
||||
assert list(numpy.array(raw_images[0])[257][34]) == [70, 66, 63]
|
||||
|
||||
check_list_images_tensors = [
|
||||
-1.0039474964141846,
|
||||
-1.0039474964141846,
|
||||
@ -657,3 +658,138 @@ def test_load_feature_extractor_model_clip_vitl14_336(multimodal_device):
|
||||
|
||||
del model, vis_processor, txt_processor
|
||||
cuda.empty_cache()
|
||||
|
||||
|
||||
model_type = "blip"
|
||||
# model_type = "blip2"
|
||||
# model_type = "albef"
|
||||
# model_type = "clip_base"
|
||||
# model_type = "clip_vitl14"
|
||||
# model_type = "clip_vitl14_336"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
(
|
||||
"pre_multimodal_device",
|
||||
"pre_model",
|
||||
"pre_proc_pic",
|
||||
"pre_proc_text",
|
||||
"pre_extracted_feature_img",
|
||||
"pre_extracted_feature_text",
|
||||
),
|
||||
[
|
||||
pytest.param(
|
||||
device("cuda"),
|
||||
"blip2",
|
||||
[
|
||||
-1.0039474964141846,
|
||||
-1.0039474964141846,
|
||||
-0.8433647751808167,
|
||||
-0.6097899675369263,
|
||||
-0.5951915383338928,
|
||||
-0.6243883967399597,
|
||||
-0.6827820539474487,
|
||||
-0.6097899675369263,
|
||||
-0.7119789123535156,
|
||||
-1.0623412132263184,
|
||||
],
|
||||
"the bird sat on a tree located at the intersection of 23rd and 43rd streets",
|
||||
[
|
||||
0.04566730558872223,
|
||||
-0.042554520070552826,
|
||||
-0.06970272958278656,
|
||||
-0.009771779179573059,
|
||||
0.01446065679192543,
|
||||
0.10173682868480682,
|
||||
0.007092420011758804,
|
||||
-0.020045937970280647,
|
||||
0.12923966348171234,
|
||||
0.006452132016420364,
|
||||
],
|
||||
[
|
||||
-0.1384204626083374,
|
||||
-0.008662976324558258,
|
||||
0.006269007455557585,
|
||||
0.03151319921016693,
|
||||
0.060558050870895386,
|
||||
-0.03230040520429611,
|
||||
0.015861615538597107,
|
||||
-0.11856459826231003,
|
||||
-0.058296192437410355,
|
||||
0.03699290752410889,
|
||||
],
|
||||
marks=pytest.mark.skipif(
|
||||
gpu_is_not_available, reason="gpu_is_not_availible"
|
||||
),
|
||||
),
|
||||
# (device("cpu"),"blip"),
|
||||
# (device("cpu"),"albef"),
|
||||
# (device("cpu"),"clip_base"),
|
||||
# (device("cpu"),"clip_vitl14"),
|
||||
# (device("cpu"),"clip_vitl14_336"),
|
||||
# pytest.param( device("cuda"),"blip", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
|
||||
# pytest.param( device("cuda"),"albef", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
|
||||
# pytest.param( device("cuda"),"clip_base", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
|
||||
# pytest.param( device("cuda"),"clip_vitl14", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
|
||||
# pytest.param( device("cuda"),"clip_vitl14_336", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
|
||||
],
|
||||
)
|
||||
def test_parsing_images(
|
||||
pre_multimodal_device,
|
||||
pre_model,
|
||||
pre_proc_pic,
|
||||
pre_proc_text,
|
||||
pre_extracted_feature_img,
|
||||
pre_extracted_feature_text,
|
||||
):
|
||||
mydict = {
|
||||
"IMG_2746": {"filename": "./test/data/IMG_2746.png"},
|
||||
"IMG_2750": {"filename": "./test/data/IMG_2750.png"},
|
||||
}
|
||||
ms.MultimodalSearch.multimodal_device = pre_multimodal_device
|
||||
(
|
||||
model,
|
||||
vis_processor,
|
||||
txt_processor,
|
||||
image_keys,
|
||||
image_names,
|
||||
features_image_stacked,
|
||||
) = ms.MultimodalSearch.parsing_images(mydict, pre_model)
|
||||
|
||||
for i, num in zip(range(10), features_image_stacked[0, 10:20].tolist()):
|
||||
assert (
|
||||
math.isclose(num, pre_extracted_feature_img[i], rel_tol=related_error)
|
||||
is True
|
||||
)
|
||||
|
||||
test_pic = Image.open(TEST_IMAGE_2).convert("RGB")
|
||||
test_querry = (
|
||||
"The bird sat on a tree located at the intersection of 23rd and 43rd streets."
|
||||
)
|
||||
processed_pic = (
|
||||
vis_processor["eval"](test_pic).unsqueeze(0).to(pre_multimodal_device)
|
||||
)
|
||||
processed_text = txt_processor["eval"](test_querry)
|
||||
|
||||
for i, num in zip(range(10), processed_pic[0, 0, 0, 25:35].tolist()):
|
||||
assert math.isclose(num, pre_proc_pic[i], rel_tol=related_error) is True
|
||||
|
||||
assert processed_text == pre_proc_text
|
||||
|
||||
search_query = [
|
||||
{
|
||||
"text_input": "The bird sat on a tree located at the intersection of 23rd and 43rd streets."
|
||||
}
|
||||
]
|
||||
multi_features_stacked = ms.MultimodalSearch.querys_processing(
|
||||
mydict, search_query, model, txt_processor, vis_processor, pre_model
|
||||
)
|
||||
|
||||
for i, num in zip(range(10), multi_features_stacked[0, 10:20].tolist()):
|
||||
assert (
|
||||
math.isclose(num, pre_extracted_feature_text[i], rel_tol=related_error)
|
||||
is True
|
||||
)
|
||||
|
||||
del model, vis_processor, txt_processor
|
||||
cuda.empty_cache()
|
||||
|
||||
@ -47,7 +47,7 @@ dependencies = [
|
||||
"spacytextblob",
|
||||
"textblob",
|
||||
"torch",
|
||||
"salesforce-lavis @ git+https://github.com/salesforce/LAVIS.git@main",
|
||||
"salesforce-lavis",
|
||||
"bertopic",
|
||||
"grpcio",
|
||||
]
|
||||
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user