added test, fixed dependencies

Этот коммит содержится в:
Petr Andriushchenko 2023-03-03 16:26:26 +01:00
родитель b0cfab05e9
Коммит 18ecf4888b
2 изменённых файлов: 146 добавлений и 10 удалений

Просмотреть файл

@ -28,7 +28,7 @@ def test_read_img():
assert list(numpy.array(test_img)[257][34]) == [70, 66, 63]
@pytest.mark.skipif(not cuda.is_available(), reason="model for gpu only")
@pytest.mark.skipif(gpu_is_not_available, reason="model for gpu only")
def test_load_feature_extractor_model_blip2():
my_dict = {}
multimodal_device = device("cuda" if cuda.is_available() else "cpu")
@ -46,14 +46,12 @@ def test_load_feature_extractor_model_blip2():
processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device)
processed_text = txt_processor["eval"](test_querry)
with no_grad():
with cuda.amp.autocast(enabled=(device != device("cpu"))):
extracted_feature_img = model.extract_features(
{"image": processed_pic, "text_input": ""}, mode="image"
)
extracted_feature_text = model.extract_features(
{"image": "", "text_input": processed_text}, mode="text"
)
extracted_feature_img = model.extract_features(
{"image": processed_pic, "text_input": ""}, mode="image"
)
extracted_feature_text = model.extract_features(
{"image": "", "text_input": processed_text}, mode="text"
)
check_list_processed_pic = [
-1.0039474964141846,
-1.0039474964141846,
@ -122,10 +120,13 @@ def test_load_feature_extractor_model_blip2():
)
image_paths = [TEST_IMAGE_2, TEST_IMAGE_3]
raw_images, images_tensors = ms.MultimodalSearch.read_and_process_images(
my_dict, image_paths, vis_processor
)
assert list(numpy.array(raw_images[0])[257][34]) == [70, 66, 63]
check_list_images_tensors = [
-1.0039474964141846,
-1.0039474964141846,
@ -657,3 +658,138 @@ def test_load_feature_extractor_model_clip_vitl14_336(multimodal_device):
del model, vis_processor, txt_processor
cuda.empty_cache()
model_type = "blip"
# model_type = "blip2"
# model_type = "albef"
# model_type = "clip_base"
# model_type = "clip_vitl14"
# model_type = "clip_vitl14_336"
@pytest.mark.parametrize(
(
"pre_multimodal_device",
"pre_model",
"pre_proc_pic",
"pre_proc_text",
"pre_extracted_feature_img",
"pre_extracted_feature_text",
),
[
pytest.param(
device("cuda"),
"blip2",
[
-1.0039474964141846,
-1.0039474964141846,
-0.8433647751808167,
-0.6097899675369263,
-0.5951915383338928,
-0.6243883967399597,
-0.6827820539474487,
-0.6097899675369263,
-0.7119789123535156,
-1.0623412132263184,
],
"the bird sat on a tree located at the intersection of 23rd and 43rd streets",
[
0.04566730558872223,
-0.042554520070552826,
-0.06970272958278656,
-0.009771779179573059,
0.01446065679192543,
0.10173682868480682,
0.007092420011758804,
-0.020045937970280647,
0.12923966348171234,
0.006452132016420364,
],
[
-0.1384204626083374,
-0.008662976324558258,
0.006269007455557585,
0.03151319921016693,
0.060558050870895386,
-0.03230040520429611,
0.015861615538597107,
-0.11856459826231003,
-0.058296192437410355,
0.03699290752410889,
],
marks=pytest.mark.skipif(
gpu_is_not_available, reason="gpu_is_not_availible"
),
),
# (device("cpu"),"blip"),
# (device("cpu"),"albef"),
# (device("cpu"),"clip_base"),
# (device("cpu"),"clip_vitl14"),
# (device("cpu"),"clip_vitl14_336"),
# pytest.param( device("cuda"),"blip", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
# pytest.param( device("cuda"),"albef", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
# pytest.param( device("cuda"),"clip_base", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
# pytest.param( device("cuda"),"clip_vitl14", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
# pytest.param( device("cuda"),"clip_vitl14_336", marks=pytest.mark.skipif(gpu_is_not_available, reason="gpu_is_not_availible"),),
],
)
def test_parsing_images(
pre_multimodal_device,
pre_model,
pre_proc_pic,
pre_proc_text,
pre_extracted_feature_img,
pre_extracted_feature_text,
):
mydict = {
"IMG_2746": {"filename": "./test/data/IMG_2746.png"},
"IMG_2750": {"filename": "./test/data/IMG_2750.png"},
}
ms.MultimodalSearch.multimodal_device = pre_multimodal_device
(
model,
vis_processor,
txt_processor,
image_keys,
image_names,
features_image_stacked,
) = ms.MultimodalSearch.parsing_images(mydict, pre_model)
for i, num in zip(range(10), features_image_stacked[0, 10:20].tolist()):
assert (
math.isclose(num, pre_extracted_feature_img[i], rel_tol=related_error)
is True
)
test_pic = Image.open(TEST_IMAGE_2).convert("RGB")
test_querry = (
"The bird sat on a tree located at the intersection of 23rd and 43rd streets."
)
processed_pic = (
vis_processor["eval"](test_pic).unsqueeze(0).to(pre_multimodal_device)
)
processed_text = txt_processor["eval"](test_querry)
for i, num in zip(range(10), processed_pic[0, 0, 0, 25:35].tolist()):
assert math.isclose(num, pre_proc_pic[i], rel_tol=related_error) is True
assert processed_text == pre_proc_text
search_query = [
{
"text_input": "The bird sat on a tree located at the intersection of 23rd and 43rd streets."
}
]
multi_features_stacked = ms.MultimodalSearch.querys_processing(
mydict, search_query, model, txt_processor, vis_processor, pre_model
)
for i, num in zip(range(10), multi_features_stacked[0, 10:20].tolist()):
assert (
math.isclose(num, pre_extracted_feature_text[i], rel_tol=related_error)
is True
)
del model, vis_processor, txt_processor
cuda.empty_cache()

Просмотреть файл

@ -47,7 +47,7 @@ dependencies = [
"spacytextblob",
"textblob",
"torch",
"salesforce-lavis @ git+https://github.com/salesforce/LAVIS.git@main",
"salesforce-lavis",
"bertopic",
"grpcio",
]