зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 21:16:06 +02:00
Add example notebook and small fixes
Этот коммит содержится в:
родитель
a99de3a42a
Коммит
2326aef4b5
@ -2,6 +2,7 @@ from ammico.display import AnalysisExplorer
|
||||
from ammico.faces import EmotionDetector, ethical_disclosure
|
||||
from ammico.model import MultimodalSummaryModel
|
||||
from ammico.text import TextDetector, TextAnalyzer, privacy_disclosure
|
||||
from ammico.image_summary import ImageSummaryDetector
|
||||
from ammico.utils import find_files, get_dataframe
|
||||
|
||||
# Export the version defined in project metadata
|
||||
@ -18,6 +19,7 @@ __all__ = [
|
||||
"MultimodalSummaryModel",
|
||||
"TextDetector",
|
||||
"TextAnalyzer",
|
||||
"ImageSummaryDetector",
|
||||
"find_files",
|
||||
"get_dataframe",
|
||||
"ethical_disclosure",
|
||||
|
||||
@ -9,7 +9,6 @@ import warnings
|
||||
from typing import List, Optional, Union, Dict, Any
|
||||
from collections.abc import Sequence as _Sequence
|
||||
from transformers import GenerationConfig
|
||||
import re
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
|
||||
|
||||
190
ammico/notebooks/DemoImageSummaryVQA.ipynb
Обычный файл
190
ammico/notebooks/DemoImageSummaryVQA.ipynb
Обычный файл
@ -0,0 +1,190 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Image summary and visual question answering"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook shows how to generate image captions and use the visual question answering with AMMICO. \n",
|
||||
"\n",
|
||||
"The first cell imports `ammico`.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import ammico"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The cell below loads the model for VQA tasks. By default, it loads a large model on the GPU (if your device supports CUDA), otherwise it loads a relatively smaller model on the CPU. But you can specify other settings (e.g., a small model on the GPU) if you want."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = ammico.MultimodalSummaryModel()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Here you need to provide the path to your google drive folder or local folder containing the images"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"image_dict = ammico.find_files(\n",
|
||||
" path=str(\"/insert/your/path/here/\"),\n",
|
||||
" limit=-1, # -1 means no limit on the number of files, by default it is set to 20\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The cell below creates an object that analyzes images and generates a summary using a specific model and image data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"img = ammico.ImageSummaryDetector(summary_model=model, subdict=image_dict)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Image summary "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "10",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To start your work with images, you should call the `analyse_images` method.\n",
|
||||
"\n",
|
||||
"You can specify what kind of analysis you want to perform with `analysis_type`. `\"summary\"` will generate a summary for all pictures in your dictionary, `\"questions\"` will prepare answers to your questions for all pictures, and `\"summary_and_questions\"` will do both.\n",
|
||||
"\n",
|
||||
"Parameter `\"is_concise_summary\"` regulates the length of an answer.\n",
|
||||
"\n",
|
||||
"Here we want to get a long summary on each object in our image dictionary."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "11",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"summaries = img.analyse_images(analysis_type=\"summary\", is_concise_summary=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "12",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## VQA"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "13",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In addition to analyzing images in `ammico`, the same model can be used in VQA mode. To do this, you need to define the questions that will be applied to all images from your dict."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "14",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"questions = [\"Are there any visible signs of violence?\", \"Is it safe to be there?\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Here is an example of VQA mode usage. You can specify whether you want to receive short answers (recommended option) or not."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "16",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vqa_results = img.analyse_images(\n",
|
||||
" analysis_type=\"questions\",\n",
|
||||
" list_of_questions=questions,\n",
|
||||
" is_concise_answer=True,\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "ammico-dev",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@ -7,6 +7,9 @@ import collections
|
||||
import random
|
||||
|
||||
|
||||
from enum import Enum
|
||||
|
||||
|
||||
pkg = importlib_resources.files("ammico")
|
||||
|
||||
|
||||
@ -40,6 +43,12 @@ def ammico_prefetch_models():
|
||||
res.get()
|
||||
|
||||
|
||||
class AnalysisType(str, Enum):
|
||||
SUMMARY = "summary"
|
||||
QUESTIONS = "questions"
|
||||
SUMMARY_AND_QUESTIONS = "summary_and_questions"
|
||||
|
||||
|
||||
class AnalysisMethod:
|
||||
"""Base class to be inherited by all analysis methods."""
|
||||
|
||||
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user