fix if-else, added clip ViT-L-14=336 model

Этот коммит содержится в:
Petr Andriushchenko 2023-02-22 14:22:58 +01:00
родитель 779c5227ae
Коммит 4e4b7fac75
2 изменённых файлов: 160 добавлений и 120 удалений

Просмотреть файл

@ -15,54 +15,58 @@ class MultimodalSearch(AnalysisMethod):
multimodal_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_feature_extractor_model(device, model_type):
if model_type == "blip2":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="blip2_feature_extractor",
model_type="pretrain",
is_eval=True,
device=device,
)
elif model_type == "blip":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="blip_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
elif model_type == "albef":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="albef_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
elif model_type == "clip_base":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
elif model_type == "clip_rn50":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="RN50",
is_eval=True,
device=device,
)
elif model_type == "clip_vitl14":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="ViT-L-14",
is_eval=True,
device=device,
)
else:
print(
"Please, use one of the following models: blip2, blip, albef, clip_base, clip_rn50, clip_vitl14"
)
def load_feature_extractor_model_blip2(device):
model, vis_processors, txt_processors = load_model_and_preprocess(
name="blip2_feature_extractor",
model_type="pretrain",
is_eval=True,
device=device,
)
return model, vis_processors, txt_processors
def load_feature_extractor_model_blip(device):
model, vis_processors, txt_processors = load_model_and_preprocess(
name="blip_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
return model, vis_processors, txt_processors
def load_feature_extractor_model_albef(device):
model, vis_processors, txt_processors = load_model_and_preprocess(
name="albef_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
return model, vis_processors, txt_processors
def load_feature_extractor_model_clip_base(device):
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
return model, vis_processors, txt_processors
def load_feature_extractor_model_clip_vitl14(device):
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="ViT-L-14",
is_eval=True,
device=device,
)
return model, vis_processors, txt_processors
def load_feature_extractor_model_clip_vitl14_336(device):
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="ViT-L-14-336",
is_eval=True,
device=device,
)
return model, vis_processors, txt_processors
def read_img(filepath):
@ -81,34 +85,10 @@ class MultimodalSearch(AnalysisMethod):
return raw_images, images_tensors
def extract_image_features(model, images_tensors, model_type):
if model_type == "blip2":
with torch.cuda.amp.autocast(
enabled=(MultimodalSearch.multimodal_device != torch.device("cpu"))
):
features_image = [
model.extract_features(
{"image": ten, "text_input": ""}, mode="image"
)
for ten in images_tensors
]
features_image_stacked = torch.stack(
[
feat.image_embeds_proj[:, 0, :].squeeze(0)
for feat in features_image
]
)
elif model_type in ("clip_base", "clip_rn50", "clip_vitl14"):
features_image = [
model.extract_features({"image": ten}) for ten in images_tensors
]
features_image_stacked = torch.stack(
[
Func.normalize(feat.float(), dim=-1).squeeze(0)
for feat in features_image
]
)
else:
def extract_image_features_blip2(model, images_tensors):
with torch.cuda.amp.autocast(
enabled=(MultimodalSearch.multimodal_device != torch.device("cpu"))
):
features_image = [
model.extract_features({"image": ten, "text_input": ""}, mode="image")
for ten in images_tensors
@ -118,6 +98,25 @@ class MultimodalSearch(AnalysisMethod):
)
return features_image_stacked
def extract_image_features_clip(model, images_tensors):
features_image = [
model.extract_features({"image": ten}) for ten in images_tensors
]
features_image_stacked = torch.stack(
[Func.normalize(feat.float(), dim=-1).squeeze(0) for feat in features_image]
)
return features_image_stacked
def extract_image_features_basic(model, images_tensors):
features_image = [
model.extract_features({"image": ten, "text_input": ""}, mode="image")
for ten in images_tensors
]
features_image_stacked = torch.stack(
[feat.image_embeds_proj[:, 0, :].squeeze(0) for feat in features_image]
)
return features_image_stacked
def save_tensors(
model_type, features_image_stacked, name="saved_features_image.pt"
):
@ -137,9 +136,9 @@ class MultimodalSearch(AnalysisMethod):
return features_text
def parsing_images(self, model_type):
def parsing_images(self, model_type, path_to_saved_tensors=None):
if model_type in ("clip_base", "clip_rn50", "clip_vitl14"):
if model_type in ("clip_base", "clip_vitl14_336", "clip_vitl14"):
path_to_lib = lavis.__file__[:-11] + "models/clip_models/"
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/lavis/models/clip_models/bpe_simple_vocab_16e6.txt.gz"
r = requests.get(url, allow_redirects=False)
@ -148,20 +147,46 @@ class MultimodalSearch(AnalysisMethod):
image_keys = sorted(self.keys())
image_names = [self[k]["filename"] for k in image_keys]
(
model,
vis_processors,
txt_processors,
) = MultimodalSearch.load_feature_extractor_model(
MultimodalSearch.multimodal_device, model_type
)
select_model = {
"blip2": MultimodalSearch.load_feature_extractor_model_blip2,
"blip": MultimodalSearch.load_feature_extractor_model_blip,
"albef": MultimodalSearch.load_feature_extractor_model_albef,
"clip_base": MultimodalSearch.load_feature_extractor_model_clip_base,
"clip_vitl14": MultimodalSearch.load_feature_extractor_model_clip_vitl14,
"clip_vitl14_336": MultimodalSearch.load_feature_extractor_model_clip_vitl14_336,
}
select_extract_image_features = {
"blip2": MultimodalSearch.extract_image_features_blip2,
"blip": MultimodalSearch.extract_image_features_basic,
"albef": MultimodalSearch.extract_image_features_basic,
"clip_base": MultimodalSearch.extract_image_features_clip,
"clip_vitl14": MultimodalSearch.extract_image_features_clip,
"clip_vitl14_336": MultimodalSearch.extract_image_features_clip,
}
if model_type in select_model.keys():
(model, vis_processors, txt_processors,) = select_model[
model_type
](MultimodalSearch.multimodal_device)
else:
raise SyntaxError(
"Please, use one of the following models: blip2, blip, albef, clip_base, clip_vitl14, clip_vitl14_336"
)
raw_images, images_tensors = MultimodalSearch.read_and_process_images(
image_names, vis_processors
)
features_image_stacked = MultimodalSearch.extract_image_features(
model, images_tensors, model_type
)
MultimodalSearch.save_tensors(model_type, features_image_stacked)
if path_to_saved_tensors is None:
with torch.no_grad():
features_image_stacked = select_extract_image_features[model_type](
model, images_tensors
)
MultimodalSearch.save_tensors(model_type, features_image_stacked)
else:
features_image_stacked = MultimodalSearch.load_tensors(
str(path_to_saved_tensors)
)
return (
model,
@ -175,6 +200,16 @@ class MultimodalSearch(AnalysisMethod):
def querys_processing(
self, search_query, model, txt_processors, vis_processors, model_type
):
select_extract_image_features = {
"blip2": MultimodalSearch.extract_image_features_blip2,
"blip": MultimodalSearch.extract_image_features_basic,
"albef": MultimodalSearch.extract_image_features_basic,
"clip_base": MultimodalSearch.extract_image_features_clip,
"clip_vitl14": MultimodalSearch.extract_image_features_clip,
"clip_vitl14_336": MultimodalSearch.extract_image_features_clip,
}
for query in search_query:
if not (len(query) == 1) and (query in ("image", "text_input")):
raise SyntaxError(
@ -194,10 +229,10 @@ class MultimodalSearch(AnalysisMethod):
{"image": images_tensors, "text_input": text_processing}
)
if model_type in ("clip_base", "clip_rn50", "clip_vitl14"):
multi_features_query = []
for query in multi_sample:
if query["image"] == "":
multi_features_query = []
for query in multi_sample:
if query["image"] == "":
if model_type in ("clip_base", "clip_vitl14_336", "clip_vitl14"):
features = model.extract_features(
{"text_input": query["text_input"]}
)
@ -208,17 +243,7 @@ class MultimodalSearch(AnalysisMethod):
multi_features_query.append(
Func.normalize(features_squeeze, dim=-1)
)
if query["text_input"] == "":
multi_features_query.append(
MultimodalSearch.extract_image_features(
model, query["image"], model_type
)
)
else:
multi_features_query = []
for query in multi_sample:
if query["image"] == "":
else:
features = model.extract_features(query, mode="text")
features_squeeze = (
features.text_embeds_proj[:, 0, :]
@ -226,12 +251,10 @@ class MultimodalSearch(AnalysisMethod):
.to(MultimodalSearch.multimodal_device)
)
multi_features_query.append(features_squeeze)
if query["text_input"] == "":
multi_features_query.append(
MultimodalSearch.extract_image_features(
model, query["image"], model_type
)
)
if query["text_input"] == "":
multi_features_query.append(
select_extract_image_features[model_type](model, query["image"])
)
multi_features_stacked = torch.stack(
[query.squeeze(0) for query in multi_features_query]
@ -251,11 +274,13 @@ class MultimodalSearch(AnalysisMethod):
):
features_image_stacked.to(MultimodalSearch.multimodal_device)
multi_features_stacked = MultimodalSearch.querys_processing(
self, search_query, model, txt_processors, vis_processors, model_type
)
with torch.no_grad():
multi_features_stacked = MultimodalSearch.querys_processing(
self, search_query, model, txt_processors, vis_processors, model_type
)
similarity = features_image_stacked @ multi_features_stacked.t()
similarity_soft_max = torch.nn.Softmax(dim=0)(similarity / 0.01)
sorted_lists = [
sorted(range(len(similarity)), key=lambda k: similarity[k, i], reverse=True)
for i in range(len(similarity[0]))
@ -267,7 +292,7 @@ class MultimodalSearch(AnalysisMethod):
self[key]["rank " + list(search_query[q].values())[0]] = places[q][i]
self[key][list(search_query[q].values())[0]] = similarity[i][q].item()
return similarity
return similarity, similarity_soft_max
def show_results(self, query):
if "image" in query.keys():

29
notebooks/multimodal_search.ipynb сгенерированный
Просмотреть файл

@ -81,7 +81,7 @@
"id": "66d6ede4-00bc-4aeb-9a36-e52d7de33fe5",
"metadata": {},
"source": [
"You can choose one of the following models: blip, blip2, albef, clip_base, clip_rn50, clip_vitl14"
"You can choose one of the following models: blip, blip2, albef, clip_base, clip_vitl14, clip_vitl14_336"
]
},
{
@ -91,7 +91,7 @@
"metadata": {},
"outputs": [],
"source": [
"model_type = \"blip\""
"model_type = \"clip_vitl14_336\""
]
},
{
@ -116,17 +116,32 @@
"id": "9ff8a894-566b-4c4f-acca-21c50b5b1f52",
"metadata": {},
"source": [
"The of all images `features_image_stacked` was saved in `saved_features_image.pt`. If you run it once for current model and set of images you do not need to repeat it again. Instead you can load this features with the command:"
"The tensors of all images `features_image_stacked` was saved in `<Number_of_images>_<model_name>_saved_features_image.pt`. If you run it once for current model and current set of images you do not need to repeat it again. Instead you can load this features with the command:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c40e93f0-6bea-4886-b904-8b46ed6ec819",
"id": "56c6d488-f093-4661-835a-5c73a329c874",
"metadata": {},
"outputs": [],
"source": [
"# features_image_stacked = ms.MultimodalSearch.load_tensors('saved_features_image.pt')"
"# (\n",
"# model,\n",
"# vis_processors,\n",
"# txt_processors,\n",
"# image_keys,\n",
"# image_names,\n",
"# features_image_stacked,\n",
"# ) = ms.MultimodalSearch.parsing_images(mydict, model_type,\"18_clip_base_saved_features_image.pt\")"
]
},
{
"cell_type": "markdown",
"id": "309923c1-d6f8-4424-8fca-bde5f3a98b38",
"metadata": {},
"source": [
"Here we already processed our image folder with 18 images with `clip_base` model. So you need just write the name `18_clip_base_saved_features_image.pt` of the saved file that consists of tensors of all images as a 3rd argument to the previous function. "
]
},
{
@ -170,7 +185,7 @@
" image_keys,\n",
" features_image_stacked,\n",
" search_query3,\n",
");"
")"
]
},
{
@ -206,7 +221,7 @@
"metadata": {},
"outputs": [],
"source": [
"ms.MultimodalSearch.show_results(mydict, search_query3[0])"
"ms.MultimodalSearch.show_results(mydict, search_query3[4])"
]
},
{