Этот коммит содержится в:
Petr Andriushchenko 2023-03-15 16:04:43 +01:00
родитель 65d916921b
Коммит 65dbf28eef
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4C4A5DCF634115B6
2 изменённых файлов: 358 добавлений и 10 удалений

Просмотреть файл

@ -3,9 +3,14 @@ import torch
import torch.nn.functional as Func
import requests
import lavis
import numpy as np
from PIL import Image
from skimage import transform as skimage_transform
from scipy.ndimage import filters
from matplotlib import pyplot as plt
from IPython.display import display
from lavis.models import load_model_and_preprocess
from lavis.models import load_model_and_preprocess, load_model, BlipBase
from lavis.processors import load_processor
class MultimodalSearch(AnalysisMethod):
@ -301,7 +306,6 @@ class MultimodalSearch(AnalysisMethod):
for q in range(len(search_query)):
max_val = similarity[sorted_lists[q][0]][q].item()
print(max_val)
for i, key in zip(range(len(image_keys)), sorted_lists[q]):
if (
i < filter_number_of_images
@ -322,7 +326,278 @@ class MultimodalSearch(AnalysisMethod):
self[image_keys[key]][list(search_query[q].values())[0]] = 0
return similarity, sorted_lists
def show_results(self, query):
def itm_text_precessing(self, search_query):
for query in search_query:
if not (len(query) == 1) and (query in ("image", "text_input")):
raise SyntaxError(
'Each querry must contain either an "image" or a "text_input"'
)
text_query_index = []
for i, query in zip(range(len(search_query)), search_query):
if "text_input" in query.keys():
text_query_index.append(i)
return text_query_index
def itm_images_processing(self, image_paths, vis_processor):
raw_images = [MultimodalSearch.read_img(self, path) for path in image_paths]
images = [vis_processor(r_img) for r_img in raw_images]
images_tensors = torch.stack(images).to(MultimodalSearch.multimodal_device)
return raw_images, images_tensors
def get_pathes_from_query(self, query):
paths = []
image_names = []
for s in sorted(
self.items(), key=lambda t: t[1][list(query.values())[0]], reverse=True
):
if s[1]["rank " + list(query.values())[0]] is None:
break
paths.append(s[1]["filename"])
image_names.append(s[0])
return paths, image_names
def read_and_process_images_itm(self, image_paths, vis_processor):
raw_images = [MultimodalSearch.read_img(self, path) for path in image_paths]
images = [vis_processor(r_img) for r_img in raw_images]
images_tensors = torch.stack(images).to(MultimodalSearch.multimodal_device)
return raw_images, images_tensors
def compute_gradcam_batch(
self,
itm_model_type,
model,
visual_input,
text_input,
tokenized_text,
block_num=6,
):
if itm_model_type != "blip2_coco":
model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.save_attention = True
output = model(
{"image": visual_input, "text_input": text_input}, match_head="itm"
)
loss = output[:, 1].sum()
model.zero_grad()
loss.backward()
with torch.no_grad():
mask = tokenized_text.attention_mask.view(
tokenized_text.attention_mask.size(0), 1, -1, 1, 1
) # (bsz,1,token_len, 1,1)
token_length = mask.sum() - 2
token_length = token_length.cpu()
# grads and cams [bsz, num_head, seq_len, image_patch]
grads = model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.get_attn_gradients()
cams = model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.get_attention_map()
# assume using vit large with 576 num image patch
cams = (
cams[:, :, :, 1:].reshape(visual_input.size(0), 12, -1, 24, 24) * mask
)
grads = (
grads[:, :, :, 1:]
.clamp(0)
.reshape(visual_input.size(0), 12, -1, 24, 24)
* mask
)
gradcam = cams * grads
# [enc token gradcam, average gradcam across token, gradcam for individual token]
# gradcam = torch.cat((gradcam[0:1,:], gradcam[1:token_length+1, :].sum(dim=0, keepdim=True)/token_length, gradcam[1:, :]))
gradcam = gradcam.mean(1).cpu().detach()
gradcam = (
gradcam[:, 1 : token_length + 1, :].sum(dim=1, keepdim=True)
/ token_length
)
return gradcam, output
def resize_img(self, raw_img):
w, h = raw_img.size
scaling_factor = 240 / w
resized_image = raw_img.resize(
(int(w * scaling_factor), int(h * scaling_factor))
)
return resized_image
def getAttMap(self, img, attMap, blur=True, overlap=True):
attMap -= attMap.min()
if attMap.max() > 0:
attMap /= attMap.max()
attMap = skimage_transform.resize(
attMap, (img.shape[:2]), order=3, mode="constant"
)
if blur:
attMap = filters.gaussian_filter(attMap, 0.02 * max(img.shape[:2]))
attMap -= attMap.min()
attMap /= attMap.max()
cmap = plt.get_cmap("jet")
attMapV = cmap(attMap)
attMapV = np.delete(attMapV, 3, 2)
if overlap:
attMap = (
1 * (1 - attMap**0.7).reshape(attMap.shape + (1,)) * img
+ (attMap**0.7).reshape(attMap.shape + (1,)) * attMapV
)
return attMap
def upload_model_blip2_coco(self):
itm_model = load_model(
"blip2_image_text_matching",
"coco",
is_eval=True,
device=MultimodalSearch.multimodal_device,
)
vis_processor = load_processor("blip_image_eval").build(image_size=364)
return itm_model, vis_processor
def upload_model_blip_base(self):
itm_model = load_model(
"blip_image_text_matching",
"base",
is_eval=True,
device=MultimodalSearch.multimodal_device,
)
vis_processor = load_processor("blip_image_eval").build(image_size=384)
return itm_model, vis_processor
def upload_model_blip_large(self):
itm_model = load_model(
"blip_image_text_matching",
"large",
is_eval=True,
device=MultimodalSearch.multimodal_device,
)
vis_processor = load_processor("blip_image_eval").build(image_size=384)
return itm_model, vis_processor
def image_text_match_reordering(
self,
search_query,
itm_model_type,
image_keys,
sorted_lists,
batch_size=1,
need_grad_cam=False,
):
choose_model = {
" ": MultimodalSearch.upload_model_blip_base,
"blip_large": MultimodalSearch.upload_model_blip_large,
"blip2_coco": MultimodalSearch.upload_model_blip2_coco,
}
itm_model, vis_processor = choose_model[itm_model_type](self)
text_processor = load_processor("blip_caption")
tokenizer = BlipBase.init_tokenizer()
text_query_index = MultimodalSearch.itm_text_precessing(self, search_query)
avg_gradcams = []
itm_scores = []
itm_scores2 = []
image_gradcam_with_itm = {}
for index_text_query in text_query_index:
query = search_query[index_text_query]
pathes, image_names = MultimodalSearch.get_pathes_from_query(self, query)
num_batches = int(len(pathes) / batch_size)
num_batches_residue = len(pathes) % batch_size
local_itm_scores = []
local_avg_gradcams = []
if num_batches_residue != 0:
num_batches = num_batches + 1
for i in range(num_batches):
filenames_in_batch = pathes[i * batch_size : (i + 1) * batch_size]
current_len = len(filenames_in_batch)
raw_images, images = MultimodalSearch.read_and_process_images_itm(
self, filenames_in_batch, vis_processor
)
queries_batch = [text_processor(query["text_input"])] * current_len
queries_tok_batch = tokenizer(queries_batch, return_tensors="pt").to(
MultimodalSearch.multimodal_device
)
if need_grad_cam:
gradcam, itm_output = MultimodalSearch.compute_gradcam_batch(
self,
itm_model_type,
itm_model,
images,
queries_batch,
queries_tok_batch,
)
norm_imgs = [np.float32(r_img) / 255 for r_img in raw_images]
for norm_img, grad_cam in zip(norm_imgs, gradcam):
avg_gradcam = MultimodalSearch.getAttMap(
self, norm_img, grad_cam[0], blur=True
)
local_avg_gradcams.append(avg_gradcam)
else:
itm_output = itm_model(
{"image": images, "text_input": queries_batch}, match_head="itm"
)
with torch.no_grad():
itm_score = torch.nn.functional.softmax(itm_output, dim=1)
local_itm_scores.append(itm_score)
local_itm_scores2 = torch.cat(local_itm_scores)[:, 1]
if need_grad_cam:
localimage_gradcam_with_itm = {
n: i * 255 for n, i in zip(image_names, local_avg_gradcams)
}
else:
localimage_gradcam_with_itm = ""
image_names_with_itm = {
n: i.item() for n, i in zip(image_names, local_itm_scores2)
}
itm_rank = torch.argsort(local_itm_scores2, descending=True)
image_names_with_new_rank = {
image_names[i.item()]: rank
for i, rank in zip(itm_rank, range(len(itm_rank)))
}
for i, key in zip(range(len(image_keys)), sorted_lists[index_text_query]):
if image_keys[key] in image_names:
self[image_keys[key]][
"itm " + list(search_query[index_text_query].values())[0]
] = image_names_with_itm[image_keys[key]]
self[image_keys[key]][
"itm_rank " + list(search_query[index_text_query].values())[0]
] = image_names_with_new_rank[image_keys[key]]
else:
self[image_keys[key]][
"itm " + list(search_query[index_text_query].values())[0]
] = 0
self[image_keys[key]][
"itm_rank " + list(search_query[index_text_query].values())[0]
] = None
avg_gradcams.append(local_avg_gradcams)
itm_scores.append(local_itm_scores)
itm_scores2.append(local_itm_scores2)
image_gradcam_with_itm[
list(search_query[index_text_query].values())[0]
] = localimage_gradcam_with_itm
return itm_scores2, image_gradcam_with_itm
def show_results(self, query, itm=False, image_gradcam_with_itm=False):
if "image" in query.keys():
pic = Image.open(query["image"]).convert("RGB")
pic.thumbnail((400, 400))
@ -338,18 +613,29 @@ class MultimodalSearch(AnalysisMethod):
"--------------------------------------------------",
"Results:",
)
if itm:
current_querry_val = "itm " + list(query.values())[0]
current_querry_rank = "itm_rank " + list(query.values())[0]
else:
current_querry_val = list(query.values())[0]
current_querry_rank = "rank " + list(query.values())[0]
for s in sorted(
self.items(), key=lambda t: t[1][list(query.values())[0]], reverse=True
self.items(), key=lambda t: t[1][current_querry_val], reverse=True
):
if s[1]["rank " + list(query.values())[0]] is None:
if s[1][current_querry_rank] is None:
break
p1 = Image.open(s[1]["filename"]).convert("RGB")
if image_gradcam_with_itm is False:
p1 = Image.open(s[1]["filename"]).convert("RGB")
else:
image = image_gradcam_with_itm[list(query.values())[0]][s[0]]
p1 = Image.fromarray(image.astype("uint8"), "RGB")
p1.thumbnail((400, 400))
display(
"Rank: "
+ str(s[1]["rank " + list(query.values())[0]])
+ str(s[1][current_querry_rank])
+ " Val: "
+ str(s[1][list(query.values())[0]]),
+ str(s[1][current_querry_val]),
s[0],
p1,
)

66
notebooks/multimodal_search.ipynb сгенерированный
Просмотреть файл

@ -192,7 +192,7 @@
"metadata": {},
"outputs": [],
"source": [
"similarity = ms.MultimodalSearch.multimodal_search(\n",
"similarity, sorted_lists = ms.MultimodalSearch.multimodal_search(\n",
" mydict,\n",
" model,\n",
" vis_processors,\n",
@ -201,6 +201,7 @@
" image_keys,\n",
" features_image_stacked,\n",
" search_query3,\n",
" filter_number_of_images=20,\n",
")"
]
},
@ -237,7 +238,68 @@
"metadata": {},
"outputs": [],
"source": [
"ms.MultimodalSearch.show_results(mydict, search_query3[4])"
"ms.MultimodalSearch.show_results(\n",
" mydict,\n",
" search_query3[5],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0b750e9f-fe64-4028-9caf-52d7187462f1",
"metadata": {},
"source": [
"For even better results, a slightly different approach has been prepared that can improve search results. It is quite resource-intensive, so it is applied after the main algorithm has found the most relevant images. This approach works only with text queries. Among the parameters you can choose 3 models: `\"blip_base\"`, `\"blip_large\"`, `\"blip2_coco\"`. If you get the Out of Memory error, try reducing the batch_size value (minimum = 1), which is the number of images being processed simultaneously. With the parameter `need_grad_cam = True/False` you can enable the calculation of the heat map of each image to be processed. Thus the `image_text_match_reordering` function calculates new similarity values and new ranks for each image. The resulting values are added to the general dictionary."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3af7b39-6d0d-4da3-9b8f-7dfd3f5779be",
"metadata": {},
"outputs": [],
"source": [
"itm_model = \"blip_base\"\n",
"# itm_model = \"blip_large\"\n",
"# itm_model = \"blip2_coco\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "caf1f4ae-4b37-4954-800e-7120f0419de5",
"metadata": {},
"outputs": [],
"source": [
"itm_scores, image_gradcam_with_itm = ms.MultimodalSearch.image_text_match_reordering(\n",
" mydict,\n",
" search_query3,\n",
" itm_model,\n",
" image_keys,\n",
" sorted_lists,\n",
" batch_size=1,\n",
" need_grad_cam=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9e98c150-5fab-4251-bce7-0d8fc7b385b9",
"metadata": {},
"source": [
"Then using the same output function you can add the `ITM=True` arguments to output the new image order. You can also add the `image_gradcam_with_itm` argument to output the heat maps of the calculated images. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a829b99-5230-463a-8b11-30ffbb67fc3a",
"metadata": {},
"outputs": [],
"source": [
"ms.MultimodalSearch.show_results(\n",
" mydict, search_query3[0], itm=True, image_gradcam_with_itm=image_gradcam_with_itm\n",
")"
]
},
{