Change input format for multimodal search

Этот коммит содержится в:
Petr Andriushchenko 2023-02-17 15:14:12 +01:00
родитель b709f69d58
Коммит 70866dfc69
2 изменённых файлов: 938 добавлений и 80 удалений

Просмотреть файл

@ -84,12 +84,12 @@ class MultimodalSearch(AnalysisMethod):
enabled=(MultimodalSearch.multimodal_device != torch.device("cpu")) enabled=(MultimodalSearch.multimodal_device != torch.device("cpu"))
): ):
features_image = [ features_image = [
model.extract_features({"image": ten}, mode="image") model.extract_features({"image": ten, "text_input": ""}, mode="image")
for ten in images_tensors for ten in images_tensors
] ]
else: else:
features_image = [ features_image = [
model.extract_features({"image": ten}, mode="image") model.extract_features({"image": ten, "text_input": ""}, mode="image")
for ten in images_tensors for ten in images_tensors
] ]
@ -113,7 +113,8 @@ class MultimodalSearch(AnalysisMethod):
features_text = model.extract_features(sample_text, mode="text") features_text = model.extract_features(sample_text, mode="text")
return features_text return features_text
def parsing_images(self, model_type): def parsing_images(self, model_type):
image_keys = sorted(self.keys()) image_keys = sorted(self.keys())
image_names = [self[k]["filename"] for k in image_keys] image_names = [self[k]["filename"] for k in image_keys]
@ -132,31 +133,40 @@ class MultimodalSearch(AnalysisMethod):
) )
MultimodalSearch.save_tensors(features_image_stacked) MultimodalSearch.save_tensors(features_image_stacked)
return image_keys, image_names, features_image_stacked return model, vis_processors, txt_processors, image_keys, image_names, features_image_stacked
def multimodal_search( def multimodal_search(
self, model_type, image_keys, features_image_stacked, search_query self, model, vis_processors, txt_processors, model_type, image_keys, features_image_stacked, search_query
): ):
features_image_stacked.to(MultimodalSearch.multimodal_device) features_image_stacked.to(MultimodalSearch.multimodal_device)
(
model, for query in search_query:
vis_processors, if (len(query)!=1):
txt_processors, raise SyntaxError('Each querry must contain either an "image" or a "text_input"')
) = MultimodalSearch.load_feature_extractor_model(
MultimodalSearch.multimodal_device, model_type multi_sample = []
) for query in search_query:
multi_text_input = [txt_processors["eval"](query) for query in search_query] if "text_input" in query.keys():
multi_sample = [{"text_input": [query]} for query in multi_text_input] text_processing = txt_processors["eval"](query["text_input"])
multi_features_text = [ image_processing = ""
model.extract_features(sample, mode="text") for sample in multi_sample elif "image" in query.keys():
] _, image_processing = MultimodalSearch.read_and_process_images([query["image"]], vis_processors)
multi_features_text_stacked = torch.stack( text_processing = ""
[ multi_sample.append({"image": image_processing, "text_input": text_processing})
features.text_embeds_proj[:, 0, :].squeeze(0)
for features in multi_features_text multi_features_query = []
] for query in multi_sample:
).to(MultimodalSearch.multimodal_device) if query["image"] == "":
similarity = features_image_stacked @ multi_features_text_stacked.t() features = model.extract_features(query, mode="text")
features_squeeze = features.text_embeds_proj[:, 0, :].squeeze(0).to(MultimodalSearch.multimodal_device)
multi_features_query.append(features_squeeze)
if query["text_input"] == "":
multi_features_query.append( MultimodalSearch.extract_image_features(
model, query["image"], model_type))
multi_features_stacked = torch.stack([query.squeeze(0) for query in multi_features_query]).to(MultimodalSearch.multimodal_device)
similarity = features_image_stacked @ multi_features_stacked.t()
sorted_lists = [ sorted_lists = [
sorted(range(len(similarity)), key=lambda k: similarity[k, i], reverse=True) sorted(range(len(similarity)), key=lambda k: similarity[k, i], reverse=True)
for i in range(len(similarity[0])) for i in range(len(similarity[0]))
@ -165,13 +175,19 @@ class MultimodalSearch(AnalysisMethod):
for q in range(len(search_query)): for q in range(len(search_query)):
for i, key in zip(range(len(image_keys)), image_keys): for i, key in zip(range(len(image_keys)), image_keys):
self[key]["rank " + search_query[q]] = places[q][i] self[key]["rank " + list(search_query[q].values())[0]] = places[q][i]
self[key][search_query[q]] = similarity[i][q].item() self[key][list(search_query[q].values())[0]] = similarity[i][q].item()
return self return similarity
def show_results(self, query): def show_results(self, query):
for s in sorted(self.items(), key=lambda t: t[1][query], reverse=True): if "image" in query.keys():
pic = Image.open(query["image"]).convert("RGB")
pic.thumbnail((400, 400))
display("Your search query: ", pic,"--------------------------------------------------", "Results:")
elif "text_input" in query.keys():
display("Your search query: " + query["text_input"], "--------------------------------------------------", "Results:")
for s in sorted(self.items(), key=lambda t: t[1][list(query.values())[0]], reverse=True):
p1 = Image.open(s[1]["filename"]).convert("RGB") p1 = Image.open(s[1]["filename"]).convert("RGB")
p1.thumbnail((400, 400)) p1.thumbnail((400, 400))
display(p1, s[1][query]) display(p1, "Rank: " + str(s[1]["rank " + list(query.values())[0]]) + " Val: " + str(s[1][list(query.values())[0]]))

944
notebooks/multimodal_search.ipynb сгенерированный

Различия файлов скрыты, потому что одна или несколько строк слишком длинны