зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 05:04:14 +02:00
test: add mock model for summary testing
Этот коммит содержится в:
родитель
ac6d70a355
Коммит
731077be7d
82
ammico/test/TESTING_WITH_MOCKS.md
Обычный файл
82
ammico/test/TESTING_WITH_MOCKS.md
Обычный файл
@ -0,0 +1,82 @@
|
||||
# Testing with Mock Models
|
||||
|
||||
This document explains how to use the mock model fixture to write fast unit tests that don't require loading the actual model.
|
||||
|
||||
## Mock Model Fixture
|
||||
|
||||
A `mock_model` fixture has been added to `conftest.py` that creates a lightweight mock of the `MultimodalSummaryModel` class. This fixture:
|
||||
|
||||
- **Does not load any actual models** (super fast)
|
||||
- **Mocks all necessary methods** (processor, tokenizer, model.generate, etc.)
|
||||
- **Returns realistic tensor shapes** (so the code doesn't crash)
|
||||
- **Can be used for fast unit tests** that don't need actual model inference
|
||||
|
||||
## Usage
|
||||
|
||||
Simply use `mock_model` instead of `model` in your test fixtures:
|
||||
|
||||
```python
|
||||
def test_my_feature(mock_model):
|
||||
detector = ImageSummaryDetector(summary_model=mock_model, subdict={})
|
||||
# Your test code here
|
||||
pass
|
||||
```
|
||||
|
||||
## When to Use Mock vs Real Model
|
||||
|
||||
### Use `mock_model` when:
|
||||
- Testing utility functions (like `_clean_list_of_questions`)
|
||||
- Testing input validation logic
|
||||
- Testing data processing methods
|
||||
- Testing class initialization
|
||||
- **Any test that doesn't need actual model inference**
|
||||
|
||||
### Use `model` (real model) when:
|
||||
- Testing end-to-end functionality
|
||||
- Testing actual caption generation quality
|
||||
- Testing actual question answering
|
||||
- Integration tests that verify model behavior
|
||||
- **Any test marked with `@pytest.mark.long`**
|
||||
|
||||
## Example Tests Added
|
||||
|
||||
The following new tests use the mock model:
|
||||
|
||||
1. `test_image_summary_detector_init_mock` - Tests initialization
|
||||
2. `test_load_pil_if_needed_string` - Tests image loading
|
||||
3. `test_is_sequence_but_not_str` - Tests utility methods
|
||||
4. `test_validate_analysis_type` - Tests validation logic
|
||||
|
||||
All of these run quickly without loading the model.
|
||||
|
||||
## Running Tests
|
||||
|
||||
### Run only fast tests (with mocks):
|
||||
```bash
|
||||
pytest ammico/test/test_image_summary.py -v
|
||||
```
|
||||
|
||||
### Run only long tests (with real model):
|
||||
```bash
|
||||
pytest ammico/test/test_image_summary.py -m long -v
|
||||
```
|
||||
|
||||
### Run all tests:
|
||||
```bash
|
||||
pytest ammico/test/test_image_summary.py -v
|
||||
```
|
||||
|
||||
## Customizing the Mock
|
||||
|
||||
If you need to customize the mock's behavior for specific tests, you can override its methods:
|
||||
|
||||
```python
|
||||
def test_custom_behavior(mock_model):
|
||||
# Customize the mock's return value
|
||||
mock_model.tokenizer.batch_decode.return_value = ["custom", "output"]
|
||||
|
||||
detector = ImageSummaryDetector(summary_model=mock_model, subdict={})
|
||||
# Test with custom behavior
|
||||
pass
|
||||
```
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import os
|
||||
import pytest
|
||||
from unittest.mock import Mock, MagicMock
|
||||
from ammico.model import MultimodalSummaryModel
|
||||
|
||||
|
||||
@ -56,3 +57,50 @@ def model():
|
||||
yield m
|
||||
finally:
|
||||
m.close()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_model():
|
||||
"""
|
||||
Mock model fixture that doesn't load the actual model.
|
||||
Useful for faster unit tests that don't need actual model inference.
|
||||
"""
|
||||
import torch
|
||||
|
||||
# Create a mock model object
|
||||
mock_model_obj = MagicMock(spec=["generate", "eval"])
|
||||
mock_model_obj.device = "cpu"
|
||||
mock_model_obj.eval = MagicMock(return_value=mock_model_obj)
|
||||
|
||||
# Create mock processor with necessary methods
|
||||
mock_processor = MagicMock()
|
||||
mock_processor.apply_chat_template = MagicMock(
|
||||
side_effect=lambda messages, **kwargs: "processed_text"
|
||||
)
|
||||
|
||||
# Mock processor to return tensor-like inputs
|
||||
def mock_processor_call(text, images, **kwargs):
|
||||
batch_size = len(text) if isinstance(text, list) else 1
|
||||
return {
|
||||
"input_ids": torch.randint(0, 1000, (batch_size, 10)),
|
||||
"pixel_values": torch.randn(batch_size, 3, 224, 224),
|
||||
"attention_mask": torch.ones(batch_size, 10),
|
||||
}
|
||||
|
||||
mock_processor.__call__ = MagicMock(side_effect=mock_processor_call)
|
||||
|
||||
# Create mock tokenizer
|
||||
mock_tokenizer = MagicMock()
|
||||
mock_tokenizer.batch_decode = MagicMock(
|
||||
side_effect=lambda ids, **kwargs: ["mock caption" for _ in range(len(ids))]
|
||||
)
|
||||
|
||||
# Create the mock model instance
|
||||
mock_m = Mock()
|
||||
mock_m.model = mock_model_obj
|
||||
mock_m.processor = mock_processor
|
||||
mock_m.tokenizer = mock_tokenizer
|
||||
mock_m.device = "cpu"
|
||||
mock_m.close = MagicMock()
|
||||
|
||||
return mock_m
|
||||
|
||||
@ -37,7 +37,7 @@ def test_image_summary_detector_questions(model, get_testdict):
|
||||
)
|
||||
|
||||
|
||||
def test_clean_list_of_questions(model):
|
||||
def test_clean_list_of_questions(mock_model):
|
||||
list_of_questions = [
|
||||
"What is happening in the image?",
|
||||
"",
|
||||
@ -45,7 +45,7 @@ def test_clean_list_of_questions(model):
|
||||
None,
|
||||
"How many cars are in the image in total",
|
||||
]
|
||||
detector = ImageSummaryDetector(summary_model=model, subdict={})
|
||||
detector = ImageSummaryDetector(summary_model=mock_model, subdict={})
|
||||
prompt = detector.token_prompt_config["default"]["questions"]["prompt"]
|
||||
cleaned_questions = detector._clean_list_of_questions(list_of_questions, prompt)
|
||||
assert len(cleaned_questions) == 2
|
||||
@ -56,3 +56,70 @@ def test_clean_list_of_questions(model):
|
||||
assert len(cleaned_questions) == 2
|
||||
assert cleaned_questions[0] == prompt + "What is happening in the image?"
|
||||
assert cleaned_questions[1] == prompt + "How many cars are in the image in total?"
|
||||
|
||||
|
||||
# Fast tests using mock model (no actual model loading)
|
||||
def test_image_summary_detector_init_mock(mock_model, get_testdict):
|
||||
"""Test detector initialization with mocked model."""
|
||||
detector = ImageSummaryDetector(summary_model=mock_model, subdict=get_testdict)
|
||||
assert detector.summary_model is mock_model
|
||||
assert len(detector.subdict) == 2
|
||||
|
||||
|
||||
def test_load_pil_if_needed_string(mock_model):
|
||||
"""Test loading image from file path."""
|
||||
detector = ImageSummaryDetector(summary_model=mock_model)
|
||||
# This will try to actually load a file, so we'll use a test image
|
||||
import os
|
||||
|
||||
test_image_path = os.path.join(os.path.dirname(__file__), "data", "IMG_2746.png")
|
||||
if os.path.exists(test_image_path):
|
||||
img = detector._load_pil_if_needed(test_image_path)
|
||||
from PIL import Image
|
||||
|
||||
assert isinstance(img, Image.Image)
|
||||
assert img.mode == "RGB"
|
||||
|
||||
|
||||
def test_is_sequence_but_not_str(mock_model):
|
||||
"""Test sequence detection utility."""
|
||||
detector = ImageSummaryDetector(summary_model=mock_model)
|
||||
assert detector._is_sequence_but_not_str([1, 2, 3]) is True
|
||||
assert detector._is_sequence_but_not_str("string") is False
|
||||
assert detector._is_sequence_but_not_str(b"bytes") is False
|
||||
assert (
|
||||
detector._is_sequence_but_not_str({"a": 1}) is False
|
||||
) # dict is sequence-like but not handled as such
|
||||
|
||||
|
||||
def test_validate_analysis_type(mock_model):
|
||||
"""Test analysis type validation."""
|
||||
detector = ImageSummaryDetector(summary_model=mock_model)
|
||||
# Test valid types
|
||||
_, _, is_summary, is_questions = detector._validate_analysis_type(
|
||||
"summary", None, 10
|
||||
)
|
||||
assert is_summary is True
|
||||
assert is_questions is False
|
||||
|
||||
_, _, is_summary, is_questions = detector._validate_analysis_type(
|
||||
"questions", ["What is this?"], 10
|
||||
)
|
||||
assert is_summary is False
|
||||
assert is_questions is True
|
||||
|
||||
_, _, is_summary, is_questions = detector._validate_analysis_type(
|
||||
"summary_and_questions", ["What is this?"], 10
|
||||
)
|
||||
assert is_summary is True
|
||||
assert is_questions is True
|
||||
|
||||
# Test invalid type
|
||||
with pytest.raises(ValueError):
|
||||
detector._validate_analysis_type("invalid", None, 10)
|
||||
|
||||
# Test too many questions
|
||||
with pytest.raises(ValueError):
|
||||
detector._validate_analysis_type(
|
||||
"questions", ["Q" + str(i) for i in range(33)], 32
|
||||
)
|
||||
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user