Merge pull request #60 from ssciwr/add_itm

Add itm functionality
Этот коммит содержится в:
Petr Andriushchenko 2023-04-19 13:12:53 +02:00 коммит произвёл GitHub
родитель 3b1c3ef1ed fae982bc8b
Коммит 80665e5f82
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
6 изменённых файлов: 552 добавлений и 65 удалений

2
.github/workflows/ci.yml поставляемый
Просмотреть файл

@ -32,7 +32,7 @@ jobs:
- name: Run pytest
run: |
cd misinformation
python -m pytest -m "not gcv" -svv --cov=. --cov-report=xml
python -m pytest -m "not gcv and not long" -svv --cov=. --cov-report=xml
- name: Upload coverage
if: matrix.os == 'ubuntu-22.04' && matrix.python-version == '3.9'
uses: codecov/codecov-action@v3

Просмотреть файл

@ -113,7 +113,7 @@
" image_keys,\n",
" image_names,\n",
" features_image_stacked,\n",
") = ms.MultimodalSearch.parsing_images(mydict, model_type)"
") = ms.MultimodalSearch.parsing_images(mydict, model_type, path_to_saved_tensors=\".\")"
]
},
{
@ -128,7 +128,9 @@
"cell_type": "code",
"execution_count": null,
"id": "56c6d488-f093-4661-835a-5c73a329c874",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# (\n",

Просмотреть файл

@ -4,9 +4,14 @@ import torch.nn.functional as Func
import requests
import lavis
import os
import numpy as np
from PIL import Image
from skimage import transform as skimage_transform
from scipy.ndimage import filters
from matplotlib import pyplot as plt
from IPython.display import display
from lavis.models import load_model_and_preprocess
from lavis.models import load_model_and_preprocess, load_model, BlipBase
from lavis.processors import load_processor
class MultimodalSearch(AnalysisMethod):
@ -233,7 +238,7 @@ class MultimodalSearch(AnalysisMethod):
}
for query in search_query:
if not (len(query) == 1) and (query in ("image", "text_input")):
if len(query) != 1 and (query in ("image", "text_input")):
raise SyntaxError(
'Each query must contain either an "image" or a "text_input"'
)
@ -343,7 +348,288 @@ class MultimodalSearch(AnalysisMethod):
self[image_keys[key]][list(search_query[q].values())[0]] = 0
return similarity, sorted_lists
def show_results(self, query):
def itm_text_precessing(self, search_query):
for query in search_query:
if not (len(query) == 1) and (query in ("image", "text_input")):
raise SyntaxError(
'Each querry must contain either an "image" or a "text_input"'
)
text_query_index = []
for i, query in zip(range(len(search_query)), search_query):
if "text_input" in query.keys():
text_query_index.append(i)
return text_query_index
def get_pathes_from_query(self, query):
paths = []
image_names = []
for s in sorted(
self.items(), key=lambda t: t[1][list(query.values())[0]], reverse=True
):
if s[1]["rank " + list(query.values())[0]] is None:
break
paths.append(s[1]["filename"])
image_names.append(s[0])
return paths, image_names
def read_and_process_images_itm(self, image_paths, vis_processor):
raw_images = [MultimodalSearch.read_img(self, path) for path in image_paths]
images = [vis_processor(r_img) for r_img in raw_images]
images_tensors = torch.stack(images).to(MultimodalSearch.multimodal_device)
return raw_images, images_tensors
def compute_gradcam_batch(
self,
model,
visual_input,
text_input,
tokenized_text,
block_num=6,
):
model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.save_attention = True
output = model(
{"image": visual_input, "text_input": text_input}, match_head="itm"
)
loss = output[:, 1].sum()
model.zero_grad()
loss.backward()
with torch.no_grad():
mask = tokenized_text.attention_mask.view(
tokenized_text.attention_mask.size(0), 1, -1, 1, 1
) # (bsz,1,token_len, 1,1)
token_length = mask.sum() - 2
token_length = token_length.cpu()
# grads and cams [bsz, num_head, seq_len, image_patch]
grads = model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.get_attn_gradients()
cams = model.text_encoder.base_model.base_model.encoder.layer[
block_num
].crossattention.self.get_attention_map()
# assume using vit large with 576 num image patch
cams = (
cams[:, :, :, 1:].reshape(visual_input.size(0), 12, -1, 24, 24) * mask
)
grads = (
grads[:, :, :, 1:]
.clamp(0)
.reshape(visual_input.size(0), 12, -1, 24, 24)
* mask
)
gradcam = cams * grads
# [enc token gradcam, average gradcam across token, gradcam for individual token]
# gradcam = torch.cat((gradcam[0:1,:], gradcam[1:token_length+1, :].sum(dim=0, keepdim=True)/token_length, gradcam[1:, :]))
gradcam = gradcam.mean(1).cpu().detach()
gradcam = (
gradcam[:, 1 : token_length + 1, :].sum(dim=1, keepdim=True)
/ token_length
)
return gradcam, output
def resize_img(self, raw_img):
w, h = raw_img.size
scaling_factor = 240 / w
resized_image = raw_img.resize(
(int(w * scaling_factor), int(h * scaling_factor))
)
return resized_image
def get_att_map(self, img, att_map, blur=True, overlap=True):
att_map -= att_map.min()
if att_map.max() > 0:
att_map /= att_map.max()
att_map = skimage_transform.resize(
att_map, (img.shape[:2]), order=3, mode="constant"
)
if blur:
att_map = filters.gaussian_filter(att_map, 0.02 * max(img.shape[:2]))
att_map -= att_map.min()
att_map /= att_map.max()
cmap = plt.get_cmap("jet")
att_mapv = cmap(att_map)
att_mapv = np.delete(att_mapv, 3, 2)
if overlap:
att_map = (
1 * (1 - att_map**0.7).reshape(att_map.shape + (1,)) * img
+ (att_map**0.7).reshape(att_map.shape + (1,)) * att_mapv
)
return att_map
def upload_model_blip2_coco(self):
itm_model = load_model(
"blip2_image_text_matching",
"coco",
is_eval=True,
device=MultimodalSearch.multimodal_device,
)
vis_processor = load_processor("blip_image_eval").build(image_size=364)
return itm_model, vis_processor
def upload_model_blip_base(self):
itm_model = load_model(
"blip_image_text_matching",
"base",
is_eval=True,
device=MultimodalSearch.multimodal_device,
)
vis_processor = load_processor("blip_image_eval").build(image_size=384)
return itm_model, vis_processor
def upload_model_blip_large(self):
itm_model = load_model(
"blip_image_text_matching",
"large",
is_eval=True,
device=MultimodalSearch.multimodal_device,
)
vis_processor = load_processor("blip_image_eval").build(image_size=384)
return itm_model, vis_processor
def image_text_match_reordering(
self,
search_query,
itm_model_type,
image_keys,
sorted_lists,
batch_size=1,
need_grad_cam=False,
):
if itm_model_type == "blip2_coco" and need_grad_cam is True:
raise SyntaxError(
"The blip2_coco model does not yet work with gradcam. Please set need_grad_cam to False"
)
choose_model = {
"blip_base": MultimodalSearch.upload_model_blip_base,
"blip_large": MultimodalSearch.upload_model_blip_large,
"blip2_coco": MultimodalSearch.upload_model_blip2_coco,
}
itm_model, vis_processor_itm = choose_model[itm_model_type](self)
text_processor = load_processor("blip_caption")
tokenizer = BlipBase.init_tokenizer()
if itm_model_type == "blip2_coco":
need_grad_cam = False
text_query_index = MultimodalSearch.itm_text_precessing(self, search_query)
avg_gradcams = []
itm_scores = []
itm_scores2 = []
image_gradcam_with_itm = {}
for index_text_query in text_query_index:
query = search_query[index_text_query]
pathes, image_names = MultimodalSearch.get_pathes_from_query(self, query)
num_batches = int(len(pathes) / batch_size)
num_batches_residue = len(pathes) % batch_size
local_itm_scores = []
local_avg_gradcams = []
if num_batches_residue != 0:
num_batches = num_batches + 1
for i in range(num_batches):
filenames_in_batch = pathes[i * batch_size : (i + 1) * batch_size]
current_len = len(filenames_in_batch)
raw_images, images = MultimodalSearch.read_and_process_images_itm(
self, filenames_in_batch, vis_processor_itm
)
queries_batch = [text_processor(query["text_input"])] * current_len
queries_tok_batch = tokenizer(queries_batch, return_tensors="pt").to(
MultimodalSearch.multimodal_device
)
if need_grad_cam:
gradcam, itm_output = MultimodalSearch.compute_gradcam_batch(
self,
itm_model,
images,
queries_batch,
queries_tok_batch,
)
norm_imgs = [np.float32(r_img) / 255 for r_img in raw_images]
for norm_img, grad_cam in zip(norm_imgs, gradcam):
avg_gradcam = MultimodalSearch.get_att_map(
self, norm_img, np.float32(grad_cam[0]), blur=True
)
local_avg_gradcams.append(avg_gradcam)
else:
itm_output = itm_model(
{"image": images, "text_input": queries_batch}, match_head="itm"
)
with torch.no_grad():
itm_score = torch.nn.functional.softmax(itm_output, dim=1)
local_itm_scores.append(itm_score)
local_itm_scores2 = torch.cat(local_itm_scores)[:, 1]
if need_grad_cam:
localimage_gradcam_with_itm = {
n: i * 255 for n, i in zip(image_names, local_avg_gradcams)
}
else:
localimage_gradcam_with_itm = ""
image_names_with_itm = {
n: i.item() for n, i in zip(image_names, local_itm_scores2)
}
itm_rank = torch.argsort(local_itm_scores2, descending=True)
image_names_with_new_rank = {
image_names[i.item()]: rank
for i, rank in zip(itm_rank, range(len(itm_rank)))
}
for i, key in zip(range(len(image_keys)), sorted_lists[index_text_query]):
if image_keys[key] in image_names:
self[image_keys[key]][
"itm " + list(search_query[index_text_query].values())[0]
] = image_names_with_itm[image_keys[key]]
self[image_keys[key]][
"itm_rank " + list(search_query[index_text_query].values())[0]
] = image_names_with_new_rank[image_keys[key]]
else:
self[image_keys[key]][
"itm " + list(search_query[index_text_query].values())[0]
] = 0
self[image_keys[key]][
"itm_rank " + list(search_query[index_text_query].values())[0]
] = None
avg_gradcams.append(local_avg_gradcams)
itm_scores.append(local_itm_scores)
itm_scores2.append(local_itm_scores2)
image_gradcam_with_itm[
list(search_query[index_text_query].values())[0]
] = localimage_gradcam_with_itm
del (
itm_model,
vis_processor_itm,
text_processor,
raw_images,
images,
tokenizer,
queries_batch,
queries_tok_batch,
itm_score,
)
if need_grad_cam:
del itm_output, gradcam, norm_img, grad_cam, avg_gradcam
torch.cuda.empty_cache()
return itm_scores2, image_gradcam_with_itm
def show_results(self, query, itm=False, image_gradcam_with_itm=False):
if "image" in query.keys():
pic = Image.open(query["image"]).convert("RGB")
pic.thumbnail((400, 400))
@ -359,18 +645,29 @@ class MultimodalSearch(AnalysisMethod):
"--------------------------------------------------",
"Results:",
)
if itm:
current_querry_val = "itm " + list(query.values())[0]
current_querry_rank = "itm_rank " + list(query.values())[0]
else:
current_querry_val = list(query.values())[0]
current_querry_rank = "rank " + list(query.values())[0]
for s in sorted(
self.items(), key=lambda t: t[1][list(query.values())[0]], reverse=True
self.items(), key=lambda t: t[1][current_querry_val], reverse=True
):
if s[1]["rank " + list(query.values())[0]] is None:
if s[1][current_querry_rank] is None:
break
p1 = Image.open(s[1]["filename"]).convert("RGB")
if image_gradcam_with_itm is False:
p1 = Image.open(s[1]["filename"]).convert("RGB")
else:
image = image_gradcam_with_itm[list(query.values())[0]][s[0]]
p1 = Image.fromarray(image.astype("uint8"), "RGB")
p1.thumbnail((400, 400))
display(
"Rank: "
+ str(s[1]["rank " + list(query.values())[0]])
+ str(s[1][current_querry_rank])
+ " Val: "
+ str(s[1][list(query.values())[0]]),
+ str(s[1][current_querry_val]),
s[0],
p1,
)

Просмотреть файл

@ -16,3 +16,33 @@ def set_environ(request):
mypath + "/../../data/seismic-bonfire-329406-412821a70264.json"
)
print(os.environ.get("GOOGLE_APPLICATION_CREDENTIALS"))
@pytest.fixture
def get_testdict(get_path):
testdict = {
"IMG_2746": {"filename": get_path + "IMG_2746.png"},
"IMG_2809": {"filename": get_path + "IMG_2809.png"},
}
return testdict
@pytest.fixture
def get_test_my_dict(get_path):
test_my_dict = {
"IMG_2746": {
"filename": get_path + "IMG_2746.png",
"rank A bus": 1,
"A bus": 0.15640679001808167,
"rank " + get_path + "IMG_3758.png": 1,
get_path + "IMG_3758.png": 0.7533495426177979,
},
"IMG_2809": {
"filename": get_path + "IMG_2809.png",
"rank A bus": 0,
"A bus": 0.1970970332622528,
"rank " + get_path + "IMG_3758.png": 0,
get_path + "IMG_3758.png": 0.8907483816146851,
},
}
return test_my_dict

Просмотреть файл

@ -5,22 +5,17 @@ import numpy
from torch import device, cuda
import misinformation.multimodal_search as ms
testdict = {
"IMG_2746": {"filename": "./test/data/IMG_2746.png"},
"IMG_2809": {"filename": "./test/data/IMG_2809.png"},
}
related_error = 1e-2
gpu_is_not_available = not cuda.is_available()
cuda.empty_cache()
def test_read_img():
def test_read_img(get_testdict):
my_dict = {}
test_img = ms.MultimodalSearch.read_img(my_dict, testdict["IMG_2746"]["filename"])
test_img = ms.MultimodalSearch.read_img(
my_dict, get_testdict["IMG_2746"]["filename"]
)
assert list(numpy.array(test_img)[257][34]) == [70, 66, 63]
@ -205,29 +200,29 @@ dict_image_gradcam_with_itm_for_blip = {
"pre_sorted",
),
[
# (
# device("cpu"),
# "blip2",
# pre_proc_pic_blip2_blip_albef,
# pre_proc_text_blip2_blip_albef,
# pre_extracted_feature_img_blip2,
# pre_extracted_feature_text_blip2,
# simularity_blip2,
# sorted_blip2,
# ),
# pytest.param(
# device("cuda"),
# "blip2",
# pre_proc_pic_blip2_blip_albef,
# pre_proc_text_blip2_blip_albef,
# pre_extracted_feature_img_blip2,
# pre_extracted_feature_text_blip2,
# simularity_blip2,
# sorted_blip2,
# marks=pytest.mark.skipif(
# gpu_is_not_available, reason="gpu_is_not_availible"
# ),
# ),
(
device("cpu"),
"blip2",
pre_proc_pic_blip2_blip_albef,
pre_proc_text_blip2_blip_albef,
pre_extracted_feature_img_blip2,
pre_extracted_feature_text_blip2,
simularity_blip2,
sorted_blip2,
),
pytest.param(
device("cuda"),
"blip2",
pre_proc_pic_blip2_blip_albef,
pre_proc_text_blip2_blip_albef,
pre_extracted_feature_img_blip2,
pre_extracted_feature_text_blip2,
simularity_blip2,
sorted_blip2,
marks=pytest.mark.skipif(
gpu_is_not_available, reason="gpu_is_not_availible"
),
),
(
device("cpu"),
"blip",
@ -354,6 +349,8 @@ def test_parsing_images(
pre_extracted_feature_text,
pre_simularity,
pre_sorted,
get_path,
get_testdict,
tmp_path,
):
ms.MultimodalSearch.multimodal_device = pre_multimodal_device
@ -365,7 +362,7 @@ def test_parsing_images(
_,
features_image_stacked,
) = ms.MultimodalSearch.parsing_images(
testdict, pre_model, path_to_saved_tensors=tmp_path
get_testdict, pre_model, path_to_saved_tensors=tmp_path
)
for i, num in zip(range(10), features_image_stacked[0, 10:12].tolist()):
@ -374,7 +371,7 @@ def test_parsing_images(
is True
)
test_pic = Image.open(testdict["IMG_2746"]["filename"]).convert("RGB")
test_pic = Image.open(get_testdict["IMG_2746"]["filename"]).convert("RGB")
test_querry = (
"The bird sat on a tree located at the intersection of 23rd and 43rd streets."
)
@ -390,10 +387,10 @@ def test_parsing_images(
search_query = [
{"text_input": test_querry},
{"image": testdict["IMG_2746"]["filename"]},
{"image": get_testdict["IMG_2746"]["filename"]},
]
multi_features_stacked = ms.MultimodalSearch.querys_processing(
testdict, search_query, model, txt_processor, vis_processor, pre_model
get_testdict, search_query, model, txt_processor, vis_processor, pre_model
)
for i, num in zip(range(10), multi_features_stacked[0, 10:12].tolist()):
@ -410,11 +407,11 @@ def test_parsing_images(
search_query2 = [
{"text_input": "A bus"},
{"image": "../misinformation/test/data/IMG_3758.png"},
{"image": get_path + "IMG_3758.png"},
]
similarity, sorted_list = ms.MultimodalSearch.multimodal_search(
testdict,
get_testdict,
model,
vis_processor,
txt_processor,
@ -445,3 +442,81 @@ def test_parsing_images(
multi_features_stacked,
)
cuda.empty_cache()
@pytest.mark.long
def test_itm(get_test_my_dict, get_path):
search_query3 = [
{"text_input": "A bus"},
{"image": get_path + "IMG_3758.png"},
]
image_keys = ["IMG_2746", "IMG_2809"]
sorted_list = [[1, 0], [1, 0]]
for itm_model in ["blip_base", "blip_large"]:
(
itm_scores,
image_gradcam_with_itm,
) = ms.MultimodalSearch.image_text_match_reordering(
get_test_my_dict,
search_query3,
itm_model,
image_keys,
sorted_list,
batch_size=1,
need_grad_cam=True,
)
for i, itm in zip(
range(len(dict_itm_scores_for_blib[itm_model])),
dict_itm_scores_for_blib[itm_model],
):
assert (
math.isclose(itm_scores[0].tolist()[i], itm, rel_tol=10 * related_error)
is True
)
for i, grad_cam in zip(
range(len(dict_image_gradcam_with_itm_for_blip[itm_model])),
dict_image_gradcam_with_itm_for_blip[itm_model],
):
assert (
math.isclose(
image_gradcam_with_itm["A bus"]["IMG_2809"][0][0].tolist()[i],
grad_cam,
rel_tol=10 * related_error,
)
is True
)
del itm_scores, image_gradcam_with_itm
cuda.empty_cache()
@pytest.mark.long
def test_itm_blip2_coco(get_test_my_dict, get_path):
search_query3 = [
{"text_input": "A bus"},
{"image": get_path + "IMG_3758.png"},
]
image_keys = ["IMG_2746", "IMG_2809"]
sorted_list = [[1, 0], [1, 0]]
(
itm_scores,
image_gradcam_with_itm,
) = ms.MultimodalSearch.image_text_match_reordering(
get_test_my_dict,
search_query3,
"blip2_coco",
image_keys,
sorted_list,
batch_size=1,
need_grad_cam=False,
)
for i, itm in zip(
range(len(dict_itm_scores_for_blib["blip2_coco"])),
dict_itm_scores_for_blib["blip2_coco"],
):
assert (
math.isclose(itm_scores[0].tolist()[i], itm, rel_tol=10 * related_error)
is True
)
del itm_scores, image_gradcam_with_itm
cuda.empty_cache()

115
notebooks/multimodal_search.ipynb сгенерированный
Просмотреть файл

@ -138,9 +138,7 @@
" image_keys,\n",
" image_names,\n",
" features_image_stacked,\n",
") = ms.MultimodalSearch.parsing_images(\n",
" mydict, model_type, path_to_saved_tensors=\"./saved_tensors/\"\n",
")"
") = ms.MultimodalSearch.parsing_images(mydict, model_type, path_to_saved_tensors=\".\")"
]
},
{
@ -170,7 +168,7 @@
"# ) = ms.MultimodalSearch.parsing_images(\n",
"# mydict,\n",
"# model_type,\n",
"# path_to_load_tensors=\"./saved_tensors/18_blip_saved_features_image.pt\",\n",
"# path_to_load_tensors=\".5_blip_saved_features_image.pt\",\n",
"# )"
]
},
@ -194,15 +192,14 @@
"cell_type": "code",
"execution_count": null,
"id": "c4196a52-d01e-42e4-8674-5712f7d6f792",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"search_query3 = [\n",
" {\"text_input\": \"politician press conference\"},\n",
" {\"text_input\": \"a world map\"},\n",
" {\"image\": \"../data/haos.png\"},\n",
" {\"image\": \"../data/image-34098-800.png\"},\n",
" {\"image\": \"../data/LeonPresserMorocco20032015_600.png\"},\n",
" {\"text_input\": \"a dog\"},\n",
"]"
]
@ -222,10 +219,12 @@
"cell_type": "code",
"execution_count": null,
"id": "7f7dc52f-7ee9-4590-96b7-e0d9d3b82378",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"similarity = ms.MultimodalSearch.multimodal_search(\n",
"similarity, sorted_lists = ms.MultimodalSearch.multimodal_search(\n",
" mydict,\n",
" model,\n",
" vis_processors,\n",
@ -234,6 +233,7 @@
" image_keys,\n",
" features_image_stacked,\n",
" search_query3,\n",
" filter_number_of_images=20,\n",
")"
]
},
@ -249,10 +249,12 @@
"cell_type": "code",
"execution_count": null,
"id": "9ad74b21-6187-4a58-9ed8-fd3e80f5a4ed",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"mydict[\"100127S_ara\"]"
"mydict[\"109237S_spa\"]"
]
},
{
@ -267,10 +269,79 @@
"cell_type": "code",
"execution_count": null,
"id": "4324e4fd-e9aa-4933-bb12-074d54e0c510",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ms.MultimodalSearch.show_results(mydict, search_query3[4])"
"ms.MultimodalSearch.show_results(\n",
" mydict,\n",
" search_query3[0],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0b750e9f-fe64-4028-9caf-52d7187462f1",
"metadata": {},
"source": [
"For even better results, a slightly different approach has been prepared that can improve search results. It is quite resource-intensive, so it is applied after the main algorithm has found the most relevant images. This approach works only with text queries. Among the parameters you can choose 3 models: `\"blip_base\"`, `\"blip_large\"`, `\"blip2_coco\"`. If you get the Out of Memory error, try reducing the batch_size value (minimum = 1), which is the number of images being processed simultaneously. With the parameter `need_grad_cam = True/False` you can enable the calculation of the heat map of each image to be processed. Thus the `image_text_match_reordering` function calculates new similarity values and new ranks for each image. The resulting values are added to the general dictionary."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3af7b39-6d0d-4da3-9b8f-7dfd3f5779be",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"itm_model = \"blip_base\"\n",
"# itm_model = \"blip_large\"\n",
"# itm_model = \"blip2_coco\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "caf1f4ae-4b37-4954-800e-7120f0419de5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"itm_scores, image_gradcam_with_itm = ms.MultimodalSearch.image_text_match_reordering(\n",
" mydict,\n",
" search_query3,\n",
" itm_model,\n",
" image_keys,\n",
" sorted_lists,\n",
" batch_size=1,\n",
" need_grad_cam=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9e98c150-5fab-4251-bce7-0d8fc7b385b9",
"metadata": {},
"source": [
"Then using the same output function you can add the `ITM=True` arguments to output the new image order. You can also add the `image_gradcam_with_itm` argument to output the heat maps of the calculated images. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a829b99-5230-463a-8b11-30ffbb67fc3a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ms.MultimodalSearch.show_results(\n",
" mydict, search_query3[0], itm=True, image_gradcam_with_itm=image_gradcam_with_itm\n",
")"
]
},
{
@ -320,7 +391,9 @@
"cell_type": "code",
"execution_count": null,
"id": "e78646d6-80be-4d3e-8123-3360957bcaa8",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.head(10)"
@ -338,11 +411,21 @@
"cell_type": "code",
"execution_count": null,
"id": "185f7dde-20dc-44d8-9ab0-de41f9b5734d",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.to_csv(\"./data_out.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b6a79201-7c17-496c-a6a1-b8ecfd3dd1e8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {