* changed summmary.py logic

* fixing test_summary

* added macos for testing

* fixed_display_test

* fixed docs and exceptions

* added dropout menu for summary

* added new SummaryDetector to AnalysisExplorer

* bug fixing

* code improving

* fixed test_display

* fixed code smells

* reduce tests for macos

* added some tests and exceptions for summary init

* changed CI, runs pytest independently

* exclude test_analysisExplorer from macos in CI

* moved some tests from test_init_summary to test_advanced_init_summary and mark them as long

---------

Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
Этот коммит содержится в:
Petr Andriushchenko 2023-06-27 09:19:01 +02:00 коммит произвёл GitHub
родитель 75e9f49370
Коммит 8d8ea52287
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
7 изменённых файлов: 373 добавлений и 59 удалений

38
.github/workflows/ci.yml поставляемый
Просмотреть файл

@ -27,16 +27,42 @@ jobs:
run: |
python -m pip install --upgrade pip
python -m pip install -e .
- name: Run pytest linux (linux-only)
if: matrix.os == 'ubuntu-22.04'
- name: Run pytest test_colors
run: |
cd ammico
python -m pytest -m "not gcv and not long" -svv --cov=. --cov-report=xml
- name: Run pytest windows(windows-only)
if: matrix.os == 'windows-latest'
python -m pytest test/test_colors.py -svv --cov=. --cov-report=xml
- name: Run pytest test_cropposts
run: |
cd ammico
python -m pytest -m "not gcv and not long and not win_skip" -svv --cov=. --cov-report=xml
python -m pytest test/test_cropposts.py -svv --cov=. --cov-report=xml
- name: Run pytest test_display
run: |
cd ammico
python -m pytest test/test_display.py -svv --cov=. --cov-report=xml
- name: Run pytest test_faces
run: |
cd ammico
python -m pytest test/test_faces.py -svv --cov=. --cov-report=xml
- name: Run pytest test_multimodal_search
run: |
cd ammico
python -m pytest test/test_multimodal_search.py -m "not long" -svv --cov=. --cov-report=xml
- name: Run pytest test_objects
run: |
cd ammico
python -m pytest test/test_objects.py -svv --cov=. --cov-report=xml
- name: Run pytest test_summary
run: |
cd ammico
python -m pytest test/test_summary.py -m "not long" -svv --cov=. --cov-report=xml
- name: Run pytest test_text
run: |
cd ammico
python -m pytest test/test_text.py -m "not gcv" -svv --cov=. --cov-report=xml
- name: Run pytest test_utils
run: |
cd ammico
python -m pytest test/test_utils.py -svv --cov=. --cov-report=xml
- name: Upload coverage
if: matrix.os == 'ubuntu-22.04' && matrix.python-version == '3.9'
uses: codecov/codecov-action@v3

Просмотреть файл

@ -24,6 +24,8 @@ COLOR_SCHEMES = [
"CAM16-UCS",
"DIN99",
]
SUMMARY_ANALYSIS_TYPE = ["summary_and_questions", "summary", "questions"]
SUMMARY_MODEL = ["base", "large"]
class AnalysisExplorer:
@ -111,6 +113,9 @@ class AnalysisExplorer:
State("setting_Emotion_emotion_threshold", "value"),
State("setting_Emotion_race_threshold", "value"),
State("setting_Color_delta_e_method", "value"),
State("setting_Summary_analysis_type", "value"),
State("setting_Summary_model", "value"),
State("setting_Summary_list_of_questions", "value"),
prevent_initial_call=True,
)(self._right_output_analysis)
@ -118,6 +123,7 @@ class AnalysisExplorer:
Output("settings_TextDetector", "style"),
Output("settings_EmotionDetector", "style"),
Output("settings_ColorDetector", "style"),
Output("settings_Summary_Detector", "style"),
Input("Dropdown_select_Detector", "value"),
)(self._update_detector_setting)
@ -240,6 +246,60 @@ class AnalysisExplorer:
)
],
),
html.Div(
id="settings_Summary_Detector",
style={"display": "none"},
children=[
html.Div(
[
dcc.Dropdown(
options=SUMMARY_ANALYSIS_TYPE,
value="summary_and_questions",
id="setting_Summary_analysis_type",
)
],
style={
"width": "33%",
"display": "inline-block",
},
),
html.Div(
[
dcc.Dropdown(
options=SUMMARY_MODEL,
value="base",
id="setting_Summary_model",
)
],
style={
"width": "33%",
"display": "inline-block",
"margin-top": "10px",
},
),
html.Div(
[
html.Div(
"Please enter a question",
style={
"height": "50px",
"margin-top": "5px",
},
),
dcc.Input(
type="text",
id="setting_Summary_list_of_questions",
style={"height": "auto", "margin-bottom": "auto"},
),
],
style={
"width": "33%",
"display": "inline-block",
"margin-top": "10px",
},
),
],
),
],
)
return settings_layout
@ -334,16 +394,19 @@ class AnalysisExplorer:
}
if setting_input == "TextDetector":
return display_flex, display_none, display_none
return display_flex, display_none, display_none, display_none
if setting_input == "EmotionDetector":
return display_none, display_flex, display_none
return display_none, display_flex, display_none, display_none
if setting_input == "ColorDetector":
return display_none, display_none, display_flex
return display_none, display_none, display_flex, display_none
if setting_input == "SummaryDetector":
return display_none, display_none, display_none, display_flex
else:
return display_none, display_none, display_none
return display_none, display_none, display_none, display_none
def _right_output_analysis(
self,
@ -355,6 +418,9 @@ class AnalysisExplorer:
setting_emotion_emotion_threshold: int,
setting_emotion_race_threshold: int,
setting_color_delta_e_method: str,
setting_summary_analysis_type: str,
setting_summary_model: str,
setting_summary_list_of_questions: str,
) -> dict:
"""Callback function to perform analysis on the selected image and return the output.
@ -396,6 +462,15 @@ class AnalysisExplorer:
image_copy,
delta_e_method=setting_color_delta_e_method,
)
elif detector_value == "SummaryDetector":
detector_class = identify_function(
image_copy,
analysis_type=setting_summary_analysis_type,
summary_model_type=setting_summary_model,
list_of_questions=[setting_summary_list_of_questions]
if (setting_summary_list_of_questions is not None)
else None,
)
else:
detector_class = identify_function(image_copy)
return detector_class.analyse_image()

Просмотреть файл

@ -5,9 +5,91 @@ from lavis.models import load_model_and_preprocess
class SummaryDetector(AnalysisMethod):
def __init__(self, subdict: dict) -> None:
def __init__(
self,
subdict: dict = {},
summary_model_type: str = "base",
analysis_type: str = "summary_and_questions",
list_of_questions: str = None,
summary_model=None,
summary_vis_processors=None,
summary_vqa_model=None,
summary_vqa_vis_processors=None,
summary_vqa_txt_processors=None,
) -> None:
"""
SummaryDetector class for analysing images using the blip_caption model.
Args:
subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
summary_model_type (str, optional): Type of blip_caption model to use. Can be "base" or "large". Defaults to "base".
analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
summary_model ([type], optional): blip_caption model. Defaults to None.
summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
Raises:
ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
Returns:
None.
"""
super().__init__(subdict)
if analysis_type not in ["summary", "questions", "summary_and_questions"]:
raise ValueError(
"analysis_type must be one of 'summary', 'questions' or 'summary_and_questions'"
)
self.summary_device = "cuda" if cuda.is_available() else "cpu"
allowed_model_types = ["base", "large"]
if summary_model_type not in allowed_model_types:
raise ValueError(
"Model type is not allowed - please select one of {}".format(
allowed_model_types
)
)
self.summary_model_type = summary_model_type
self.analysis_type = analysis_type
if list_of_questions is None:
self.list_of_questions = [
"Are there people in the image?",
"What is this picture about?",
]
elif (not isinstance(list_of_questions, list)) or (
not all(isinstance(i, str) for i in list_of_questions)
):
raise ValueError("list_of_questions must be a list of string (questions)")
else:
self.list_of_questions = list_of_questions
if (
(summary_model is None)
and (summary_vis_processors is None)
and (analysis_type != "questions")
):
self.summary_model, self.summary_vis_processors = self.load_model(
model_type=summary_model_type
)
else:
self.summary_model = summary_model
self.summary_vis_processors = summary_vis_processors
if (
(summary_vqa_model is None)
and (summary_vqa_vis_processors is None)
and (summary_vqa_txt_processors is None)
and (analysis_type != "summary")
):
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
else:
self.summary_vqa_model = summary_vqa_model
self.summary_vqa_vis_processors = summary_vqa_vis_processors
self.summary_vqa_txt_processors = summary_vqa_txt_processors
def load_model_base(self):
"""
@ -63,32 +145,71 @@ class SummaryDetector(AnalysisMethod):
summary_model, summary_vis_processors = select_model[model_type](self)
return summary_model, summary_vis_processors
def analyse_image(self, summary_model=None, summary_vis_processors=None):
def load_vqa_model(self):
"""
Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def analyse_image(self):
"""
Analyse image with blip_caption model.
Args:
Returns:
self.subdict (dict): dictionary with analysis results.
"""
if self.analysis_type == "summary_and_questions":
self.analyse_summary()
self.analyse_questions(self.list_of_questions)
elif self.analysis_type == "summary":
self.analyse_summary()
elif self.analysis_type == "questions":
self.analyse_questions(self.list_of_questions)
return self.subdict
def analyse_summary(self):
"""
Create 1 constant and 3 non deterministic captions for image.
Args:
summary_model (str): model.
summary_vis_processors (str): preprocessors for visual inputs.
Returns:
self.subdict (dict): dictionary with constant image summary and 3 non deterministic summary.
self.subdict (dict): dictionary with analysis results.
"""
if summary_model is None and summary_vis_processors is None:
summary_model, summary_vis_processors = self.load_model_base()
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
summary_vis_processors["eval"](raw_image)
self.summary_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
with no_grad():
self.subdict["const_image_summary"] = summary_model.generate(
self.subdict["const_image_summary"] = self.summary_model.generate(
{"image": image}
)[0]
self.subdict["3_non-deterministic summary"] = summary_model.generate(
self.subdict["3_non-deterministic summary"] = self.summary_model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
return self.subdict
@ -103,32 +224,37 @@ class SummaryDetector(AnalysisMethod):
Returns:
self.subdict (dict): dictionary with answers to questions.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
if (
(self.summary_vqa_model is None)
and (self.summary_vqa_vis_processors is None)
and (self.summary_vqa_txt_processors is None)
):
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
if len(list_of_questions) > 0:
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
summary_vqa_vis_processors["eval"](raw_image)
self.summary_vqa_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
question_batch = []
for quest in list_of_questions:
question_batch.append(summary_vqa_txt_processors["eval"](quest))
question_batch.append(self.summary_vqa_txt_processors["eval"](quest))
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
with no_grad():
answers_batch = summary_vqa_model.predict_answers(
answers_batch = self.summary_vqa_model.predict_answers(
samples={"image": image_batch, "text_input": question_batch},
inference_method="generate",
)

Просмотреть файл

@ -1,6 +1,7 @@
import json
import ammico.display as ammico_display
import pytest
import sys
def test_explore_analysis_faces(get_path):
@ -25,6 +26,7 @@ def test_explore_analysis_objects(get_path):
assert sub_dict[key] == outs[key]
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
def test_AnalysisExplorer(get_path):
path_img_1 = get_path + "IMG_2809.png"
path_img_2 = get_path + "IMG_2746.png"
@ -46,18 +48,59 @@ def test_AnalysisExplorer(get_path):
assert analysis_explorer.update_picture(None) is None
analysis_explorer._right_output_analysis(
2, all_options_dict, path_img_1, "ObjectDetector", True, 50, 50, "CIE 1976"
2,
all_options_dict,
path_img_1,
"ObjectDetector",
True,
50,
50,
"CIE 1976",
"summary_and_questions",
"base",
"How many people are in the picture?",
)
analysis_explorer._right_output_analysis(
2, all_options_dict, path_img_1, "EmotionDetector", True, 50, 50, "CIE 1976"
)
analysis_explorer._right_output_analysis(
2, all_options_dict, path_img_1, "SummaryDetector", True, 50, 50, "CIE 1976"
2,
all_options_dict,
path_img_1,
"EmotionDetector",
True,
50,
50,
"CIE 1976",
"summary_and_questions",
"base",
"How many people are in the picture?",
)
analysis_explorer._right_output_analysis(
2, all_options_dict, path_img_1, "ColorDetector", True, 50, 50, "CIE 1976"
2,
all_options_dict,
path_img_1,
"SummaryDetector",
True,
50,
50,
"CIE 1976",
"summary_and_questions",
"base",
"How many people are in the picture?",
)
analysis_explorer._right_output_analysis(
2,
all_options_dict,
path_img_1,
"ColorDetector",
True,
50,
50,
"CIE 1976",
"summary_and_questions",
"base",
"How many people are in the picture?",
)
with pytest.raises(EnvironmentError):

Просмотреть файл

@ -2,6 +2,7 @@ import json
import pytest
import ammico.objects as ob
import ammico.objects_cvlib as ob_cvlib
import sys
OBJECT_1 = "cell phone"
OBJECT_2 = "motorcycle"
@ -25,6 +26,7 @@ def test_objects_from_cvlib(default_objects):
assert str(objects) == str(out_objects)
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
def test_analyse_image_cvlib(get_path):
mydict = {"filename": get_path + TEST_IMAGE_1}
ob_cvlib.ObjectCVLib().analyse_image(mydict)
@ -55,6 +57,7 @@ def test_init_default_objects():
assert init_objects[obj] == "no"
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
def test_analyse_image_from_file_cvlib(get_path):
file_path = get_path + TEST_IMAGE_1
objs = ob_cvlib.ObjectCVLib().analyse_image_from_file(file_path)
@ -66,6 +69,7 @@ def test_analyse_image_from_file_cvlib(get_path):
assert objs[key] == out_dict[key]
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
def test_detect_objects_cvlib(get_path):
file_path = get_path + TEST_IMAGE_1
objs = ob_cvlib.ObjectCVLib().detect_objects_cvlib(file_path)
@ -82,6 +86,7 @@ def test_set_keys(default_objects, get_path):
assert str(default_objects) == str(key_objs)
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
def test_analyse_image(get_path):
mydict = {"filename": get_path + TEST_IMAGE_1}
ob.ObjectDetector.set_client_to_cvlib()

Просмотреть файл

@ -40,7 +40,7 @@ def get_dict(get_path):
return mydict
@pytest.mark.long
# @pytest.mark.long
def test_analyse_image(get_dict):
reference_results = {
"run1": {
@ -63,9 +63,12 @@ def test_analyse_image(get_dict):
)
# run two different images
for key in get_dict.keys():
get_dict[key] = sm.SummaryDetector(get_dict[key]).analyse_image(
summary_model, summary_vis_processors
)
get_dict[key] = sm.SummaryDetector(
get_dict[key],
analysis_type="summary",
summary_model=summary_model,
summary_vis_processors=summary_vis_processors,
).analyse_image()
assert len(get_dict) == 2
for key in get_dict.keys():
assert len(get_dict[key]["3_non-deterministic summary"]) == 3
@ -84,9 +87,11 @@ def test_analyse_questions(get_dict):
"What happends on the picture?",
]
for key in get_dict:
get_dict[key] = sm.SummaryDetector(get_dict[key]).analyse_questions(
list_of_questions
)
get_dict[key] = sm.SummaryDetector(
get_dict[key],
analysis_type="questions",
list_of_questions=list_of_questions,
).analyse_image()
assert len(get_dict) == 2
list_of_questions_ans = ["2", "100"]
list_of_questions_ans2 = ["flood", "festival"]
@ -97,3 +102,50 @@ def test_analyse_questions(get_dict):
test_answers2.append(get_dict[key][list_of_questions[1]])
assert sorted(test_answers) == sorted(list_of_questions_ans)
assert sorted(test_answers2) == sorted(list_of_questions_ans2)
def test_init_summary():
sd = sm.SummaryDetector({}, analysis_type="summary")
assert sd.analysis_type == "summary"
with pytest.raises(ValueError):
sm.SummaryDetector({}, analysis_type="something")
list_of_questions = ["Question 1", "Question 2"]
sd = sm.SummaryDetector({}, list_of_questions=list_of_questions)
assert sd.list_of_questions == list_of_questions
with pytest.raises(ValueError):
sm.SummaryDetector({}, list_of_questions={})
with pytest.raises(ValueError):
sm.SummaryDetector({}, list_of_questions=[None])
with pytest.raises(ValueError):
sm.SummaryDetector({}, list_of_questions=[0.1])
@pytest.mark.long
def test_advanced_init_summary():
sd = sm.SummaryDetector({})
assert sd.summary_model
assert sd.summary_vis_processors
sd = sm.SummaryDetector({}, summary_model_type="large")
assert sd.summary_model
assert sd.summary_vis_processors
with pytest.raises(ValueError):
sm.SummaryDetector({}, summary_model_type="bla")
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device="cpu",
)
sd = sm.SummaryDetector(
{},
summary_vqa_model=summary_vqa_model,
summary_vqa_vis_processors=summary_vqa_vis_processors,
summary_vqa_txt_processors=summary_vqa_txt_processors,
)
assert sd.summary_vqa_model
assert sd.summary_vqa_vis_processors
assert sd.summary_vqa_txt_processors

Просмотреть файл

@ -1,13 +0,0 @@
import ammico
if __name__ == "__main__":
images = ammico.find_files(path=".")
mydict = ammico.initialize_dict(images)
for key in mydict:
mydict[key] = ammico.TextDetector(
mydict[key], analyse_text=True
).analyse_image()
print(mydict)
outdict = ammico.append_data_to_dict(mydict)
df = ammico.dump_df(outdict)
df.to_csv("data_out.csv")