зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
changed summmary.py logic (#121)
* changed summmary.py logic * fixing test_summary * added macos for testing * fixed_display_test * fixed docs and exceptions * added dropout menu for summary * added new SummaryDetector to AnalysisExplorer * bug fixing * code improving * fixed test_display * fixed code smells * reduce tests for macos * added some tests and exceptions for summary init * changed CI, runs pytest independently * exclude test_analysisExplorer from macos in CI * moved some tests from test_init_summary to test_advanced_init_summary and mark them as long --------- Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
Этот коммит содержится в:
родитель
75e9f49370
Коммит
8d8ea52287
38
.github/workflows/ci.yml
поставляемый
38
.github/workflows/ci.yml
поставляемый
@ -27,16 +27,42 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
python -m pip install --upgrade pip
|
python -m pip install --upgrade pip
|
||||||
python -m pip install -e .
|
python -m pip install -e .
|
||||||
- name: Run pytest linux (linux-only)
|
- name: Run pytest test_colors
|
||||||
if: matrix.os == 'ubuntu-22.04'
|
|
||||||
run: |
|
run: |
|
||||||
cd ammico
|
cd ammico
|
||||||
python -m pytest -m "not gcv and not long" -svv --cov=. --cov-report=xml
|
python -m pytest test/test_colors.py -svv --cov=. --cov-report=xml
|
||||||
- name: Run pytest windows(windows-only)
|
- name: Run pytest test_cropposts
|
||||||
if: matrix.os == 'windows-latest'
|
|
||||||
run: |
|
run: |
|
||||||
cd ammico
|
cd ammico
|
||||||
python -m pytest -m "not gcv and not long and not win_skip" -svv --cov=. --cov-report=xml
|
python -m pytest test/test_cropposts.py -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_display
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_display.py -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_faces
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_faces.py -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_multimodal_search
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_multimodal_search.py -m "not long" -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_objects
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_objects.py -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_summary
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_summary.py -m "not long" -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_text
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_text.py -m "not gcv" -svv --cov=. --cov-report=xml
|
||||||
|
- name: Run pytest test_utils
|
||||||
|
run: |
|
||||||
|
cd ammico
|
||||||
|
python -m pytest test/test_utils.py -svv --cov=. --cov-report=xml
|
||||||
- name: Upload coverage
|
- name: Upload coverage
|
||||||
if: matrix.os == 'ubuntu-22.04' && matrix.python-version == '3.9'
|
if: matrix.os == 'ubuntu-22.04' && matrix.python-version == '3.9'
|
||||||
uses: codecov/codecov-action@v3
|
uses: codecov/codecov-action@v3
|
||||||
|
|||||||
@ -24,6 +24,8 @@ COLOR_SCHEMES = [
|
|||||||
"CAM16-UCS",
|
"CAM16-UCS",
|
||||||
"DIN99",
|
"DIN99",
|
||||||
]
|
]
|
||||||
|
SUMMARY_ANALYSIS_TYPE = ["summary_and_questions", "summary", "questions"]
|
||||||
|
SUMMARY_MODEL = ["base", "large"]
|
||||||
|
|
||||||
|
|
||||||
class AnalysisExplorer:
|
class AnalysisExplorer:
|
||||||
@ -111,6 +113,9 @@ class AnalysisExplorer:
|
|||||||
State("setting_Emotion_emotion_threshold", "value"),
|
State("setting_Emotion_emotion_threshold", "value"),
|
||||||
State("setting_Emotion_race_threshold", "value"),
|
State("setting_Emotion_race_threshold", "value"),
|
||||||
State("setting_Color_delta_e_method", "value"),
|
State("setting_Color_delta_e_method", "value"),
|
||||||
|
State("setting_Summary_analysis_type", "value"),
|
||||||
|
State("setting_Summary_model", "value"),
|
||||||
|
State("setting_Summary_list_of_questions", "value"),
|
||||||
prevent_initial_call=True,
|
prevent_initial_call=True,
|
||||||
)(self._right_output_analysis)
|
)(self._right_output_analysis)
|
||||||
|
|
||||||
@ -118,6 +123,7 @@ class AnalysisExplorer:
|
|||||||
Output("settings_TextDetector", "style"),
|
Output("settings_TextDetector", "style"),
|
||||||
Output("settings_EmotionDetector", "style"),
|
Output("settings_EmotionDetector", "style"),
|
||||||
Output("settings_ColorDetector", "style"),
|
Output("settings_ColorDetector", "style"),
|
||||||
|
Output("settings_Summary_Detector", "style"),
|
||||||
Input("Dropdown_select_Detector", "value"),
|
Input("Dropdown_select_Detector", "value"),
|
||||||
)(self._update_detector_setting)
|
)(self._update_detector_setting)
|
||||||
|
|
||||||
@ -240,6 +246,60 @@ class AnalysisExplorer:
|
|||||||
)
|
)
|
||||||
],
|
],
|
||||||
),
|
),
|
||||||
|
html.Div(
|
||||||
|
id="settings_Summary_Detector",
|
||||||
|
style={"display": "none"},
|
||||||
|
children=[
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
dcc.Dropdown(
|
||||||
|
options=SUMMARY_ANALYSIS_TYPE,
|
||||||
|
value="summary_and_questions",
|
||||||
|
id="setting_Summary_analysis_type",
|
||||||
|
)
|
||||||
|
],
|
||||||
|
style={
|
||||||
|
"width": "33%",
|
||||||
|
"display": "inline-block",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
dcc.Dropdown(
|
||||||
|
options=SUMMARY_MODEL,
|
||||||
|
value="base",
|
||||||
|
id="setting_Summary_model",
|
||||||
|
)
|
||||||
|
],
|
||||||
|
style={
|
||||||
|
"width": "33%",
|
||||||
|
"display": "inline-block",
|
||||||
|
"margin-top": "10px",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
html.Div(
|
||||||
|
"Please enter a question",
|
||||||
|
style={
|
||||||
|
"height": "50px",
|
||||||
|
"margin-top": "5px",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
dcc.Input(
|
||||||
|
type="text",
|
||||||
|
id="setting_Summary_list_of_questions",
|
||||||
|
style={"height": "auto", "margin-bottom": "auto"},
|
||||||
|
),
|
||||||
|
],
|
||||||
|
style={
|
||||||
|
"width": "33%",
|
||||||
|
"display": "inline-block",
|
||||||
|
"margin-top": "10px",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
return settings_layout
|
return settings_layout
|
||||||
@ -334,16 +394,19 @@ class AnalysisExplorer:
|
|||||||
}
|
}
|
||||||
|
|
||||||
if setting_input == "TextDetector":
|
if setting_input == "TextDetector":
|
||||||
return display_flex, display_none, display_none
|
return display_flex, display_none, display_none, display_none
|
||||||
|
|
||||||
if setting_input == "EmotionDetector":
|
if setting_input == "EmotionDetector":
|
||||||
return display_none, display_flex, display_none
|
return display_none, display_flex, display_none, display_none
|
||||||
|
|
||||||
if setting_input == "ColorDetector":
|
if setting_input == "ColorDetector":
|
||||||
return display_none, display_none, display_flex
|
return display_none, display_none, display_flex, display_none
|
||||||
|
|
||||||
|
if setting_input == "SummaryDetector":
|
||||||
|
return display_none, display_none, display_none, display_flex
|
||||||
|
|
||||||
else:
|
else:
|
||||||
return display_none, display_none, display_none
|
return display_none, display_none, display_none, display_none
|
||||||
|
|
||||||
def _right_output_analysis(
|
def _right_output_analysis(
|
||||||
self,
|
self,
|
||||||
@ -355,6 +418,9 @@ class AnalysisExplorer:
|
|||||||
setting_emotion_emotion_threshold: int,
|
setting_emotion_emotion_threshold: int,
|
||||||
setting_emotion_race_threshold: int,
|
setting_emotion_race_threshold: int,
|
||||||
setting_color_delta_e_method: str,
|
setting_color_delta_e_method: str,
|
||||||
|
setting_summary_analysis_type: str,
|
||||||
|
setting_summary_model: str,
|
||||||
|
setting_summary_list_of_questions: str,
|
||||||
) -> dict:
|
) -> dict:
|
||||||
"""Callback function to perform analysis on the selected image and return the output.
|
"""Callback function to perform analysis on the selected image and return the output.
|
||||||
|
|
||||||
@ -396,6 +462,15 @@ class AnalysisExplorer:
|
|||||||
image_copy,
|
image_copy,
|
||||||
delta_e_method=setting_color_delta_e_method,
|
delta_e_method=setting_color_delta_e_method,
|
||||||
)
|
)
|
||||||
|
elif detector_value == "SummaryDetector":
|
||||||
|
detector_class = identify_function(
|
||||||
|
image_copy,
|
||||||
|
analysis_type=setting_summary_analysis_type,
|
||||||
|
summary_model_type=setting_summary_model,
|
||||||
|
list_of_questions=[setting_summary_list_of_questions]
|
||||||
|
if (setting_summary_list_of_questions is not None)
|
||||||
|
else None,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
detector_class = identify_function(image_copy)
|
detector_class = identify_function(image_copy)
|
||||||
return detector_class.analyse_image()
|
return detector_class.analyse_image()
|
||||||
|
|||||||
@ -5,9 +5,91 @@ from lavis.models import load_model_and_preprocess
|
|||||||
|
|
||||||
|
|
||||||
class SummaryDetector(AnalysisMethod):
|
class SummaryDetector(AnalysisMethod):
|
||||||
def __init__(self, subdict: dict) -> None:
|
def __init__(
|
||||||
|
self,
|
||||||
|
subdict: dict = {},
|
||||||
|
summary_model_type: str = "base",
|
||||||
|
analysis_type: str = "summary_and_questions",
|
||||||
|
list_of_questions: str = None,
|
||||||
|
summary_model=None,
|
||||||
|
summary_vis_processors=None,
|
||||||
|
summary_vqa_model=None,
|
||||||
|
summary_vqa_vis_processors=None,
|
||||||
|
summary_vqa_txt_processors=None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
SummaryDetector class for analysing images using the blip_caption model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
|
||||||
|
summary_model_type (str, optional): Type of blip_caption model to use. Can be "base" or "large". Defaults to "base".
|
||||||
|
analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
|
||||||
|
list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
|
||||||
|
summary_model ([type], optional): blip_caption model. Defaults to None.
|
||||||
|
summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
|
||||||
|
summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
|
||||||
|
summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
|
||||||
|
summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None.
|
||||||
|
"""
|
||||||
|
|
||||||
super().__init__(subdict)
|
super().__init__(subdict)
|
||||||
|
if analysis_type not in ["summary", "questions", "summary_and_questions"]:
|
||||||
|
raise ValueError(
|
||||||
|
"analysis_type must be one of 'summary', 'questions' or 'summary_and_questions'"
|
||||||
|
)
|
||||||
self.summary_device = "cuda" if cuda.is_available() else "cpu"
|
self.summary_device = "cuda" if cuda.is_available() else "cpu"
|
||||||
|
allowed_model_types = ["base", "large"]
|
||||||
|
if summary_model_type not in allowed_model_types:
|
||||||
|
raise ValueError(
|
||||||
|
"Model type is not allowed - please select one of {}".format(
|
||||||
|
allowed_model_types
|
||||||
|
)
|
||||||
|
)
|
||||||
|
self.summary_model_type = summary_model_type
|
||||||
|
self.analysis_type = analysis_type
|
||||||
|
if list_of_questions is None:
|
||||||
|
self.list_of_questions = [
|
||||||
|
"Are there people in the image?",
|
||||||
|
"What is this picture about?",
|
||||||
|
]
|
||||||
|
elif (not isinstance(list_of_questions, list)) or (
|
||||||
|
not all(isinstance(i, str) for i in list_of_questions)
|
||||||
|
):
|
||||||
|
raise ValueError("list_of_questions must be a list of string (questions)")
|
||||||
|
else:
|
||||||
|
self.list_of_questions = list_of_questions
|
||||||
|
if (
|
||||||
|
(summary_model is None)
|
||||||
|
and (summary_vis_processors is None)
|
||||||
|
and (analysis_type != "questions")
|
||||||
|
):
|
||||||
|
self.summary_model, self.summary_vis_processors = self.load_model(
|
||||||
|
model_type=summary_model_type
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.summary_model = summary_model
|
||||||
|
self.summary_vis_processors = summary_vis_processors
|
||||||
|
if (
|
||||||
|
(summary_vqa_model is None)
|
||||||
|
and (summary_vqa_vis_processors is None)
|
||||||
|
and (summary_vqa_txt_processors is None)
|
||||||
|
and (analysis_type != "summary")
|
||||||
|
):
|
||||||
|
(
|
||||||
|
self.summary_vqa_model,
|
||||||
|
self.summary_vqa_vis_processors,
|
||||||
|
self.summary_vqa_txt_processors,
|
||||||
|
) = self.load_vqa_model()
|
||||||
|
else:
|
||||||
|
self.summary_vqa_model = summary_vqa_model
|
||||||
|
self.summary_vqa_vis_processors = summary_vqa_vis_processors
|
||||||
|
self.summary_vqa_txt_processors = summary_vqa_txt_processors
|
||||||
|
|
||||||
def load_model_base(self):
|
def load_model_base(self):
|
||||||
"""
|
"""
|
||||||
@ -63,32 +145,71 @@ class SummaryDetector(AnalysisMethod):
|
|||||||
summary_model, summary_vis_processors = select_model[model_type](self)
|
summary_model, summary_vis_processors = select_model[model_type](self)
|
||||||
return summary_model, summary_vis_processors
|
return summary_model, summary_vis_processors
|
||||||
|
|
||||||
def analyse_image(self, summary_model=None, summary_vis_processors=None):
|
def load_vqa_model(self):
|
||||||
|
"""
|
||||||
|
Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
model (torch.nn.Module): model.
|
||||||
|
vis_processors (dict): preprocessors for visual inputs.
|
||||||
|
txt_processors (dict): preprocessors for text inputs.
|
||||||
|
|
||||||
|
"""
|
||||||
|
(
|
||||||
|
summary_vqa_model,
|
||||||
|
summary_vqa_vis_processors,
|
||||||
|
summary_vqa_txt_processors,
|
||||||
|
) = load_model_and_preprocess(
|
||||||
|
name="blip_vqa",
|
||||||
|
model_type="vqav2",
|
||||||
|
is_eval=True,
|
||||||
|
device=self.summary_device,
|
||||||
|
)
|
||||||
|
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
|
||||||
|
|
||||||
|
def analyse_image(self):
|
||||||
|
"""
|
||||||
|
Analyse image with blip_caption model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
self.subdict (dict): dictionary with analysis results.
|
||||||
|
"""
|
||||||
|
if self.analysis_type == "summary_and_questions":
|
||||||
|
self.analyse_summary()
|
||||||
|
self.analyse_questions(self.list_of_questions)
|
||||||
|
elif self.analysis_type == "summary":
|
||||||
|
self.analyse_summary()
|
||||||
|
elif self.analysis_type == "questions":
|
||||||
|
self.analyse_questions(self.list_of_questions)
|
||||||
|
|
||||||
|
return self.subdict
|
||||||
|
|
||||||
|
def analyse_summary(self):
|
||||||
"""
|
"""
|
||||||
Create 1 constant and 3 non deterministic captions for image.
|
Create 1 constant and 3 non deterministic captions for image.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
summary_model (str): model.
|
|
||||||
summary_vis_processors (str): preprocessors for visual inputs.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
self.subdict (dict): dictionary with constant image summary and 3 non deterministic summary.
|
self.subdict (dict): dictionary with analysis results.
|
||||||
"""
|
"""
|
||||||
if summary_model is None and summary_vis_processors is None:
|
|
||||||
summary_model, summary_vis_processors = self.load_model_base()
|
|
||||||
|
|
||||||
path = self.subdict["filename"]
|
path = self.subdict["filename"]
|
||||||
raw_image = Image.open(path).convert("RGB")
|
raw_image = Image.open(path).convert("RGB")
|
||||||
image = (
|
image = (
|
||||||
summary_vis_processors["eval"](raw_image)
|
self.summary_vis_processors["eval"](raw_image)
|
||||||
.unsqueeze(0)
|
.unsqueeze(0)
|
||||||
.to(self.summary_device)
|
.to(self.summary_device)
|
||||||
)
|
)
|
||||||
with no_grad():
|
with no_grad():
|
||||||
self.subdict["const_image_summary"] = summary_model.generate(
|
self.subdict["const_image_summary"] = self.summary_model.generate(
|
||||||
{"image": image}
|
{"image": image}
|
||||||
)[0]
|
)[0]
|
||||||
self.subdict["3_non-deterministic summary"] = summary_model.generate(
|
self.subdict["3_non-deterministic summary"] = self.summary_model.generate(
|
||||||
{"image": image}, use_nucleus_sampling=True, num_captions=3
|
{"image": image}, use_nucleus_sampling=True, num_captions=3
|
||||||
)
|
)
|
||||||
return self.subdict
|
return self.subdict
|
||||||
@ -103,32 +224,37 @@ class SummaryDetector(AnalysisMethod):
|
|||||||
Returns:
|
Returns:
|
||||||
self.subdict (dict): dictionary with answers to questions.
|
self.subdict (dict): dictionary with answers to questions.
|
||||||
"""
|
"""
|
||||||
(
|
if (
|
||||||
summary_vqa_model,
|
(self.summary_vqa_model is None)
|
||||||
summary_vqa_vis_processors,
|
and (self.summary_vqa_vis_processors is None)
|
||||||
summary_vqa_txt_processors,
|
and (self.summary_vqa_txt_processors is None)
|
||||||
) = load_model_and_preprocess(
|
):
|
||||||
name="blip_vqa",
|
(
|
||||||
model_type="vqav2",
|
self.summary_vqa_model,
|
||||||
is_eval=True,
|
self.summary_vqa_vis_processors,
|
||||||
device=self.summary_device,
|
self.summary_vqa_txt_processors,
|
||||||
)
|
) = load_model_and_preprocess(
|
||||||
|
name="blip_vqa",
|
||||||
|
model_type="vqav2",
|
||||||
|
is_eval=True,
|
||||||
|
device=self.summary_device,
|
||||||
|
)
|
||||||
if len(list_of_questions) > 0:
|
if len(list_of_questions) > 0:
|
||||||
path = self.subdict["filename"]
|
path = self.subdict["filename"]
|
||||||
raw_image = Image.open(path).convert("RGB")
|
raw_image = Image.open(path).convert("RGB")
|
||||||
image = (
|
image = (
|
||||||
summary_vqa_vis_processors["eval"](raw_image)
|
self.summary_vqa_vis_processors["eval"](raw_image)
|
||||||
.unsqueeze(0)
|
.unsqueeze(0)
|
||||||
.to(self.summary_device)
|
.to(self.summary_device)
|
||||||
)
|
)
|
||||||
question_batch = []
|
question_batch = []
|
||||||
for quest in list_of_questions:
|
for quest in list_of_questions:
|
||||||
question_batch.append(summary_vqa_txt_processors["eval"](quest))
|
question_batch.append(self.summary_vqa_txt_processors["eval"](quest))
|
||||||
batch_size = len(list_of_questions)
|
batch_size = len(list_of_questions)
|
||||||
image_batch = image.repeat(batch_size, 1, 1, 1)
|
image_batch = image.repeat(batch_size, 1, 1, 1)
|
||||||
|
|
||||||
with no_grad():
|
with no_grad():
|
||||||
answers_batch = summary_vqa_model.predict_answers(
|
answers_batch = self.summary_vqa_model.predict_answers(
|
||||||
samples={"image": image_batch, "text_input": question_batch},
|
samples={"image": image_batch, "text_input": question_batch},
|
||||||
inference_method="generate",
|
inference_method="generate",
|
||||||
)
|
)
|
||||||
|
|||||||
@ -1,6 +1,7 @@
|
|||||||
import json
|
import json
|
||||||
import ammico.display as ammico_display
|
import ammico.display as ammico_display
|
||||||
import pytest
|
import pytest
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
def test_explore_analysis_faces(get_path):
|
def test_explore_analysis_faces(get_path):
|
||||||
@ -25,6 +26,7 @@ def test_explore_analysis_objects(get_path):
|
|||||||
assert sub_dict[key] == outs[key]
|
assert sub_dict[key] == outs[key]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
|
||||||
def test_AnalysisExplorer(get_path):
|
def test_AnalysisExplorer(get_path):
|
||||||
path_img_1 = get_path + "IMG_2809.png"
|
path_img_1 = get_path + "IMG_2809.png"
|
||||||
path_img_2 = get_path + "IMG_2746.png"
|
path_img_2 = get_path + "IMG_2746.png"
|
||||||
@ -46,18 +48,59 @@ def test_AnalysisExplorer(get_path):
|
|||||||
assert analysis_explorer.update_picture(None) is None
|
assert analysis_explorer.update_picture(None) is None
|
||||||
|
|
||||||
analysis_explorer._right_output_analysis(
|
analysis_explorer._right_output_analysis(
|
||||||
2, all_options_dict, path_img_1, "ObjectDetector", True, 50, 50, "CIE 1976"
|
2,
|
||||||
|
all_options_dict,
|
||||||
|
path_img_1,
|
||||||
|
"ObjectDetector",
|
||||||
|
True,
|
||||||
|
50,
|
||||||
|
50,
|
||||||
|
"CIE 1976",
|
||||||
|
"summary_and_questions",
|
||||||
|
"base",
|
||||||
|
"How many people are in the picture?",
|
||||||
)
|
)
|
||||||
|
|
||||||
analysis_explorer._right_output_analysis(
|
analysis_explorer._right_output_analysis(
|
||||||
2, all_options_dict, path_img_1, "EmotionDetector", True, 50, 50, "CIE 1976"
|
2,
|
||||||
)
|
all_options_dict,
|
||||||
analysis_explorer._right_output_analysis(
|
path_img_1,
|
||||||
2, all_options_dict, path_img_1, "SummaryDetector", True, 50, 50, "CIE 1976"
|
"EmotionDetector",
|
||||||
|
True,
|
||||||
|
50,
|
||||||
|
50,
|
||||||
|
"CIE 1976",
|
||||||
|
"summary_and_questions",
|
||||||
|
"base",
|
||||||
|
"How many people are in the picture?",
|
||||||
)
|
)
|
||||||
|
|
||||||
analysis_explorer._right_output_analysis(
|
analysis_explorer._right_output_analysis(
|
||||||
2, all_options_dict, path_img_1, "ColorDetector", True, 50, 50, "CIE 1976"
|
2,
|
||||||
|
all_options_dict,
|
||||||
|
path_img_1,
|
||||||
|
"SummaryDetector",
|
||||||
|
True,
|
||||||
|
50,
|
||||||
|
50,
|
||||||
|
"CIE 1976",
|
||||||
|
"summary_and_questions",
|
||||||
|
"base",
|
||||||
|
"How many people are in the picture?",
|
||||||
|
)
|
||||||
|
|
||||||
|
analysis_explorer._right_output_analysis(
|
||||||
|
2,
|
||||||
|
all_options_dict,
|
||||||
|
path_img_1,
|
||||||
|
"ColorDetector",
|
||||||
|
True,
|
||||||
|
50,
|
||||||
|
50,
|
||||||
|
"CIE 1976",
|
||||||
|
"summary_and_questions",
|
||||||
|
"base",
|
||||||
|
"How many people are in the picture?",
|
||||||
)
|
)
|
||||||
|
|
||||||
with pytest.raises(EnvironmentError):
|
with pytest.raises(EnvironmentError):
|
||||||
|
|||||||
@ -2,6 +2,7 @@ import json
|
|||||||
import pytest
|
import pytest
|
||||||
import ammico.objects as ob
|
import ammico.objects as ob
|
||||||
import ammico.objects_cvlib as ob_cvlib
|
import ammico.objects_cvlib as ob_cvlib
|
||||||
|
import sys
|
||||||
|
|
||||||
OBJECT_1 = "cell phone"
|
OBJECT_1 = "cell phone"
|
||||||
OBJECT_2 = "motorcycle"
|
OBJECT_2 = "motorcycle"
|
||||||
@ -25,6 +26,7 @@ def test_objects_from_cvlib(default_objects):
|
|||||||
assert str(objects) == str(out_objects)
|
assert str(objects) == str(out_objects)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
|
||||||
def test_analyse_image_cvlib(get_path):
|
def test_analyse_image_cvlib(get_path):
|
||||||
mydict = {"filename": get_path + TEST_IMAGE_1}
|
mydict = {"filename": get_path + TEST_IMAGE_1}
|
||||||
ob_cvlib.ObjectCVLib().analyse_image(mydict)
|
ob_cvlib.ObjectCVLib().analyse_image(mydict)
|
||||||
@ -55,6 +57,7 @@ def test_init_default_objects():
|
|||||||
assert init_objects[obj] == "no"
|
assert init_objects[obj] == "no"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
|
||||||
def test_analyse_image_from_file_cvlib(get_path):
|
def test_analyse_image_from_file_cvlib(get_path):
|
||||||
file_path = get_path + TEST_IMAGE_1
|
file_path = get_path + TEST_IMAGE_1
|
||||||
objs = ob_cvlib.ObjectCVLib().analyse_image_from_file(file_path)
|
objs = ob_cvlib.ObjectCVLib().analyse_image_from_file(file_path)
|
||||||
@ -66,6 +69,7 @@ def test_analyse_image_from_file_cvlib(get_path):
|
|||||||
assert objs[key] == out_dict[key]
|
assert objs[key] == out_dict[key]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
|
||||||
def test_detect_objects_cvlib(get_path):
|
def test_detect_objects_cvlib(get_path):
|
||||||
file_path = get_path + TEST_IMAGE_1
|
file_path = get_path + TEST_IMAGE_1
|
||||||
objs = ob_cvlib.ObjectCVLib().detect_objects_cvlib(file_path)
|
objs = ob_cvlib.ObjectCVLib().detect_objects_cvlib(file_path)
|
||||||
@ -82,6 +86,7 @@ def test_set_keys(default_objects, get_path):
|
|||||||
assert str(default_objects) == str(key_objs)
|
assert str(default_objects) == str(key_objs)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(sys.platform == "darwin", reason="segmentation fault on mac")
|
||||||
def test_analyse_image(get_path):
|
def test_analyse_image(get_path):
|
||||||
mydict = {"filename": get_path + TEST_IMAGE_1}
|
mydict = {"filename": get_path + TEST_IMAGE_1}
|
||||||
ob.ObjectDetector.set_client_to_cvlib()
|
ob.ObjectDetector.set_client_to_cvlib()
|
||||||
|
|||||||
@ -40,7 +40,7 @@ def get_dict(get_path):
|
|||||||
return mydict
|
return mydict
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.long
|
# @pytest.mark.long
|
||||||
def test_analyse_image(get_dict):
|
def test_analyse_image(get_dict):
|
||||||
reference_results = {
|
reference_results = {
|
||||||
"run1": {
|
"run1": {
|
||||||
@ -63,9 +63,12 @@ def test_analyse_image(get_dict):
|
|||||||
)
|
)
|
||||||
# run two different images
|
# run two different images
|
||||||
for key in get_dict.keys():
|
for key in get_dict.keys():
|
||||||
get_dict[key] = sm.SummaryDetector(get_dict[key]).analyse_image(
|
get_dict[key] = sm.SummaryDetector(
|
||||||
summary_model, summary_vis_processors
|
get_dict[key],
|
||||||
)
|
analysis_type="summary",
|
||||||
|
summary_model=summary_model,
|
||||||
|
summary_vis_processors=summary_vis_processors,
|
||||||
|
).analyse_image()
|
||||||
assert len(get_dict) == 2
|
assert len(get_dict) == 2
|
||||||
for key in get_dict.keys():
|
for key in get_dict.keys():
|
||||||
assert len(get_dict[key]["3_non-deterministic summary"]) == 3
|
assert len(get_dict[key]["3_non-deterministic summary"]) == 3
|
||||||
@ -84,9 +87,11 @@ def test_analyse_questions(get_dict):
|
|||||||
"What happends on the picture?",
|
"What happends on the picture?",
|
||||||
]
|
]
|
||||||
for key in get_dict:
|
for key in get_dict:
|
||||||
get_dict[key] = sm.SummaryDetector(get_dict[key]).analyse_questions(
|
get_dict[key] = sm.SummaryDetector(
|
||||||
list_of_questions
|
get_dict[key],
|
||||||
)
|
analysis_type="questions",
|
||||||
|
list_of_questions=list_of_questions,
|
||||||
|
).analyse_image()
|
||||||
assert len(get_dict) == 2
|
assert len(get_dict) == 2
|
||||||
list_of_questions_ans = ["2", "100"]
|
list_of_questions_ans = ["2", "100"]
|
||||||
list_of_questions_ans2 = ["flood", "festival"]
|
list_of_questions_ans2 = ["flood", "festival"]
|
||||||
@ -97,3 +102,50 @@ def test_analyse_questions(get_dict):
|
|||||||
test_answers2.append(get_dict[key][list_of_questions[1]])
|
test_answers2.append(get_dict[key][list_of_questions[1]])
|
||||||
assert sorted(test_answers) == sorted(list_of_questions_ans)
|
assert sorted(test_answers) == sorted(list_of_questions_ans)
|
||||||
assert sorted(test_answers2) == sorted(list_of_questions_ans2)
|
assert sorted(test_answers2) == sorted(list_of_questions_ans2)
|
||||||
|
|
||||||
|
|
||||||
|
def test_init_summary():
|
||||||
|
sd = sm.SummaryDetector({}, analysis_type="summary")
|
||||||
|
assert sd.analysis_type == "summary"
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
sm.SummaryDetector({}, analysis_type="something")
|
||||||
|
list_of_questions = ["Question 1", "Question 2"]
|
||||||
|
sd = sm.SummaryDetector({}, list_of_questions=list_of_questions)
|
||||||
|
assert sd.list_of_questions == list_of_questions
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
sm.SummaryDetector({}, list_of_questions={})
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
sm.SummaryDetector({}, list_of_questions=[None])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
sm.SummaryDetector({}, list_of_questions=[0.1])
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.long
|
||||||
|
def test_advanced_init_summary():
|
||||||
|
sd = sm.SummaryDetector({})
|
||||||
|
assert sd.summary_model
|
||||||
|
assert sd.summary_vis_processors
|
||||||
|
sd = sm.SummaryDetector({}, summary_model_type="large")
|
||||||
|
assert sd.summary_model
|
||||||
|
assert sd.summary_vis_processors
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
sm.SummaryDetector({}, summary_model_type="bla")
|
||||||
|
(
|
||||||
|
summary_vqa_model,
|
||||||
|
summary_vqa_vis_processors,
|
||||||
|
summary_vqa_txt_processors,
|
||||||
|
) = load_model_and_preprocess(
|
||||||
|
name="blip_vqa",
|
||||||
|
model_type="vqav2",
|
||||||
|
is_eval=True,
|
||||||
|
device="cpu",
|
||||||
|
)
|
||||||
|
sd = sm.SummaryDetector(
|
||||||
|
{},
|
||||||
|
summary_vqa_model=summary_vqa_model,
|
||||||
|
summary_vqa_vis_processors=summary_vqa_vis_processors,
|
||||||
|
summary_vqa_txt_processors=summary_vqa_txt_processors,
|
||||||
|
)
|
||||||
|
assert sd.summary_vqa_model
|
||||||
|
assert sd.summary_vqa_vis_processors
|
||||||
|
assert sd.summary_vqa_txt_processors
|
||||||
|
|||||||
@ -1,13 +0,0 @@
|
|||||||
import ammico
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
images = ammico.find_files(path=".")
|
|
||||||
mydict = ammico.initialize_dict(images)
|
|
||||||
for key in mydict:
|
|
||||||
mydict[key] = ammico.TextDetector(
|
|
||||||
mydict[key], analyse_text=True
|
|
||||||
).analyse_image()
|
|
||||||
print(mydict)
|
|
||||||
outdict = ammico.append_data_to_dict(mydict)
|
|
||||||
df = ammico.dump_df(outdict)
|
|
||||||
df.to_csv("data_out.csv")
|
|
||||||
Загрузка…
x
Ссылка в новой задаче
Block a user