model for image summarization and vqa

Этот коммит содержится в:
DimasfromLavoisier 2025-08-29 15:11:43 +02:00
родитель 36a0f90a76
Коммит 930797af57

Просмотреть файл

@ -1,641 +1,344 @@
from ammico.utils import AnalysisMethod from ammico.utils import AnalysisMethod, AnalysisType
from torch import cuda, no_grad from ammico.model import MultimodalSummaryModel
import os
import torch
from PIL import Image from PIL import Image
from lavis.models import load_model_and_preprocess import warnings
from typing import Optional
from typing import List, Optional, Union, Dict, Any
from collections.abc import Sequence as _Sequence
from transformers import GenerationConfig
import re
from qwen_vl_utils import process_vision_info
class SummaryDetector(AnalysisMethod): class ImageSummaryDetector(AnalysisMethod):
allowed_model_types = [
"base",
"large",
"vqa",
]
allowed_new_model_types = [
"blip2_t5_pretrain_flant5xxl",
"blip2_t5_pretrain_flant5xl",
"blip2_t5_caption_coco_flant5xl",
"blip2_opt_pretrain_opt2.7b",
"blip2_opt_pretrain_opt6.7b",
"blip2_opt_caption_coco_opt2.7b",
"blip2_opt_caption_coco_opt6.7b",
]
all_allowed_model_types = allowed_model_types + allowed_new_model_types
allowed_analysis_types = ["summary", "questions", "summary_and_questions"]
def __init__( def __init__(
self, self,
summary_model: MultimodalSummaryModel,
subdict: dict = {}, subdict: dict = {},
model_type: str = "base",
analysis_type: str = "summary_and_questions",
list_of_questions: Optional[list[str]] = None,
summary_model=None,
summary_vis_processors=None,
summary_vqa_model=None,
summary_vqa_vis_processors=None,
summary_vqa_txt_processors=None,
summary_vqa_model_new=None,
summary_vqa_vis_processors_new=None,
summary_vqa_txt_processors_new=None,
device_type: Optional[str] = None,
) -> None: ) -> None:
""" """
SummaryDetector class for analysing images using the blip_caption model. Class for analysing images using QWEN-2.5-VL model.
It provides methods for generating captions and answering questions about images.
Args: Args:
summary_model ([type], optional): An instance of MultimodalSummaryModel to be used for analysis.
subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}. subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
model_type (str, optional): Type of model to use. Can be "base" or "large" or "vqa" for blip_caption and VQA. Or can be one of the new models:
"blip2_t5_pretrain_flant5xxl",
"blip2_t5_pretrain_flant5xl",
"blip2_t5_caption_coco_flant5xl",
"blip2_opt_pretrain_opt2.7b",
"blip2_opt_pretrain_opt6.7b",
"blip2_opt_caption_coco_opt2.7b",
"blip2_opt_caption_coco_opt6.7b". Defaults to "base".
analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
summary_model ([type], optional): blip_caption model. Defaults to None.
summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
summary_vqa_model_new ([type], optional): new_vqa model. Defaults to None.
summary_vqa_vis_processors_new ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
summary_vqa_txt_processors_new ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
Raises:
ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
Returns: Returns:
None. None.
""" """
super().__init__(subdict) super().__init__(subdict)
# check if analysis_type is valid self.summary_model = summary_model
if analysis_type not in self.allowed_analysis_types:
raise ValueError( def _load_pil_if_needed(
"analysis_type must be one of {}".format(self.allowed_analysis_types) self, filename: Union[str, os.PathLike, Image.Image]
) ) -> Image.Image:
# check if device_type is valid if isinstance(filename, (str, os.PathLike)):
if device_type is None: return Image.open(filename).convert("RGB")
self.summary_device = "cuda" if cuda.is_available() else "cpu" elif isinstance(filename, Image.Image):
elif device_type not in ["cuda", "cpu"]: return filename.convert("RGB")
raise ValueError("device_type must be one of {}".format(["cuda", "cpu"])) else:
raise ValueError("filename must be a path or PIL.Image")
@staticmethod
def _is_sequence_but_not_str(obj: Any) -> bool:
"""True for sequence-like but not a string/bytes/PIL.Image."""
return isinstance(obj, _Sequence) and not isinstance(
obj, (str, bytes, Image.Image)
)
def _prepare_inputs(
self, list_of_questions: list[str], entry: Optional[Dict[str, Any]] = None
) -> Dict[str, torch.Tensor]:
filename = entry.get("filename")
if filename is None:
raise ValueError("entry must contain key 'filename'")
if isinstance(filename, (str, os.PathLike, Image.Image)):
images_context = self._load_pil_if_needed(filename)
elif self._is_sequence_but_not_str(filename):
images_context = [self._load_pil_if_needed(i) for i in filename]
else: else:
self.summary_device = device_type
# check if model_type is valid
if model_type not in self.all_allowed_model_types:
raise ValueError( raise ValueError(
"Model type is not allowed - please select one of {}".format( "Unsupported 'filename' entry: expected path, PIL.Image, or sequence."
self.all_allowed_model_types
)
) )
self.model_type = model_type
self.analysis_type = analysis_type images_only_messages = [
# check if list_of_questions is valid {
if list_of_questions is None and model_type in self.allowed_model_types: "role": "user",
self.list_of_questions = [ "content": [
"Are there people in the image?", *(
"What is this picture about?", [{"type": "image", "image": img} for img in images_context]
if isinstance(images_context, list)
else [{"type": "image", "image": images_context}]
)
],
}
]
try:
image_inputs, _ = process_vision_info(images_only_messages)
except Exception as e:
raise RuntimeError(f"Image processing failed: {e}")
texts: List[str] = []
for q in list_of_questions:
messages = [
{
"role": "user",
"content": [
*(
[
{"type": "image", "image": image}
for image in images_context
]
if isinstance(images_context, list)
else [{"type": "image", "image": images_context}]
),
{"type": "text", "text": q},
],
}
] ]
elif list_of_questions is None and model_type in self.allowed_new_model_types: text = self.summary_model.processor.apply_chat_template(
self.list_of_questions = [ messages, tokenize=False, add_generation_prompt=True
"Question: Are there people in the image? Answer:",
"Question: What is this picture about? Answer:",
]
elif (not isinstance(list_of_questions, list)) or (
not all(isinstance(i, str) for i in list_of_questions)
):
raise ValueError(
"list_of_questions must be a list of string (questions)"
) # add sequence of questions
else:
self.list_of_questions = list_of_questions
# load models and preprocessors
if (
model_type in self.allowed_model_types
and (summary_model is None)
and (summary_vis_processors is None)
and (analysis_type == "summary" or analysis_type == "summary_and_questions")
):
self.summary_model, self.summary_vis_processors = self.load_model(
model_type=model_type
) )
else: texts.append(text)
self.summary_model = summary_model
self.summary_vis_processors = summary_vis_processors
if (
model_type in self.allowed_model_types
and (summary_vqa_model is None)
and (summary_vqa_vis_processors is None)
and (summary_vqa_txt_processors is None)
and (
analysis_type == "questions" or analysis_type == "summary_and_questions"
)
):
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
else:
self.summary_vqa_model = summary_vqa_model
self.summary_vqa_vis_processors = summary_vqa_vis_processors
self.summary_vqa_txt_processors = summary_vqa_txt_processors
if (
model_type in self.allowed_new_model_types
and (summary_vqa_model_new is None)
and (summary_vqa_vis_processors_new is None)
and (summary_vqa_txt_processors_new is None)
):
(
self.summary_vqa_model_new,
self.summary_vqa_vis_processors_new,
self.summary_vqa_txt_processors_new,
) = self.load_new_model(model_type=model_type)
else:
self.summary_vqa_model_new = summary_vqa_model_new
self.summary_vqa_vis_processors_new = summary_vqa_vis_processors_new
self.summary_vqa_txt_processors_new = summary_vqa_txt_processors_new
def load_model_base(self): images_batch = [image_inputs] * len(texts)
""" inputs = self.summary_model.processor(
Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models. text=texts,
images=images_batch,
Args: padding=True,
return_tensors="pt",
Returns:
summary_model (torch.nn.Module): model.
summary_vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="base_coco",
is_eval=True,
device=self.summary_device,
) )
return summary_model, summary_vis_processors inputs = {k: v.to(self.summary_model.device) for k, v in inputs.items()}
def load_model_large(self): return inputs
"""
Load large_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args: def analyse_images(
Returns:
summary_model (torch.nn.Module): model.
summary_vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="large_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model(self, model_type: str):
"""
Load blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
model_type (str): type of the model.
Returns:
summary_model (torch.nn.Module): model.
summary_vis_processors (dict): preprocessors for visual inputs.
"""
select_model = {
"base": SummaryDetector.load_model_base,
"large": SummaryDetector.load_model_large,
}
summary_model, summary_vis_processors = select_model[model_type](self)
return summary_model, summary_vis_processors
def load_vqa_model(self):
"""
Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
Args:
Returns:
summary_vqa_model (torch.nn.Module): model.
summary_vqa_vis_processors (dict): preprocessors for visual inputs.
summary_vqa_txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def analyse_image(
self, self,
subdict: dict = None, analysis_type: Union[AnalysisType, str] = AnalysisType.SUMMARY_AND_QUESTIONS,
analysis_type: Optional[str] = None, list_of_questions: Optional[List[str]] = None,
list_of_questions: Optional[list[str]] = None, max_questions_per_image: int = 32,
consequential_questions: bool = False, keys_batch_size: int = 16,
): is_concise_summary: bool = True,
is_concise_answer: bool = True,
) -> Dict[str, dict]:
""" """
Analyse image with blip_caption model. Analyse image with model.
Args: Args:
analysis_type (str): type of the analysis. analysis_type (str): type of the analysis.
subdict (dict): dictionary with analising pictures.
list_of_questions (list[str]): list of questions. list_of_questions (list[str]): list of questions.
consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models. max_questions_per_image (int): maximum number of questions per image. We recommend to keep it low to avoid long processing times and high memory usage.
keys_batch_size (int): number of images to process in a batch.
is_concise_summary (bool): whether to generate concise summary.
is_concise_answer (bool): whether to generate concise answers.
Returns: Returns:
self.subdict (dict): dictionary with analysis results. self.subdict (dict): dictionary with analysis results.
""" """
if analysis_type is None: # TODO: add option to ask multiple questions per image as one batch.
analysis_type = self.analysis_type if isinstance(analysis_type, AnalysisType):
if subdict is not None: analysis_type = analysis_type.value
self.subdict = subdict
if list_of_questions is not None:
self.list_of_questions = list_of_questions
if analysis_type == "summary_and_questions": allowed = {"summary", "questions", "summary_and_questions"}
if ( if analysis_type not in allowed:
self.model_type in self.allowed_model_types raise ValueError(f"analysis_type must be one of {allowed}")
and self.analysis_type != "summary_and_questions"
): # if model_type is not new and required model is absent if list_of_questions is None:
if self.summary_model is None: # load summary model if it is not loaded list_of_questions = [
self.summary_model, self.summary_vis_processors = self.load_model( "Are there people in the image?",
model_type=self.model_type "What is this picture about?",
]
keys = list(self.subdict.keys())
for batch_start in range(0, len(keys), keys_batch_size):
batch_keys = keys[batch_start : batch_start + keys_batch_size]
for key in batch_keys:
entry = self.subdict[key]
if analysis_type in ("summary", "summary_and_questions"):
try:
caps = self.generate_caption(
entry,
num_return_sequences=1,
is_concise_summary=is_concise_summary,
)
entry["caption"] = caps[0] if caps else ""
except Exception as e:
warnings.warn(
"Caption generation failed for key %s: %s", key, e
)
if analysis_type in ("questions", "summary_and_questions"):
if len(list_of_questions) > max_questions_per_image:
raise ValueError(
f"Number of questions per image ({len(list_of_questions)}) exceeds safety cap ({max_questions_per_image})."
" Reduce questions or increase max_questions_per_image."
)
try:
vqa_map = self.answer_questions(
list_of_questions, entry, is_concise_answer
)
entry["vqa"] = vqa_map
except Exception as e:
warnings.warn("VQA failed for key %s: %s", key, e)
self.subdict[key] = entry
return self.subdict
def generate_caption(
self,
entry: Optional[Dict[str, Any]] = None,
num_return_sequences: int = 1,
is_concise_summary: bool = True,
) -> List[str]:
"""
Create caption for image. Depending on is_concise_summary it will be either concise or detailed.
Args:
entry (dict): dictionary containing the image to be captioned.
num_return_sequences (int): number of captions to generate.
is_concise_summary (bool): whether to generate concise summary.
Returns:
results (list[str]): list of generated captions.
"""
if is_concise_summary:
prompt = ["Describe this image in one concise caption."]
max_new_tokens = 64
else:
prompt = ["Describe this image."]
max_new_tokens = 256
inputs = self._prepare_inputs(prompt, entry)
gen_conf = GenerationConfig(
max_new_tokens=max_new_tokens,
do_sample=False,
num_return_sequences=num_return_sequences,
)
with torch.inference_mode():
try:
if self.summary_model.device == "cuda":
with torch.cuda.amp.autocast(enabled=True):
generated_ids = self.summary_model.model.generate(
**inputs, generation_config=gen_conf
)
else:
generated_ids = self.summary_model.model.generate(
**inputs, generation_config=gen_conf
) )
elif ( except RuntimeError as e:
self.summary_vqa_model is None warnings.warn(
): # load vqa model if it is not loaded "Retry without autocast failed: %s. Attempting cudnn-disabled retry.",
( e,
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
self.analysis_type = "summary_and_questions" # now all models are loaded, so you can perform any analysis
self.analyse_summary(nondeterministic_summaries=True)
self.analyse_questions(self.list_of_questions, consequential_questions)
elif analysis_type == "summary":
if (
(self.model_type in self.allowed_model_types)
and (self.analysis_type == "questions")
and (self.summary_model is None)
): # if model_type is not new and required model is absent
(
self.summary_model,
self.summary_vis_processors,
) = self.load_model( # load summary model if it is not loaded
model_type=self.model_type
) )
self.analysis_type = "summary_and_questions" # now all models are loaded, so you can perform any analysis cudnn_was_enabled = (
self.analyse_summary(nondeterministic_summaries=True) torch.backends.cudnn.is_available() and torch.backends.cudnn.enabled
elif analysis_type == "questions": )
if ( if cudnn_was_enabled:
(self.model_type in self.allowed_model_types) torch.backends.cudnn.enabled = False
and (self.analysis_type == "summary") try:
and (self.summary_vqa_model is None) generated_ids = self.summary_model.model.generate(
): # if model_type is not new and required model is absent **inputs, generation_config=gen_conf
( )
self.summary_vqa_model, # load vqa model if it is not loaded except Exception as retry_error:
self.summary_vqa_vis_processors, raise RuntimeError(
self.summary_vqa_txt_processors, f"Failed to generate ids after retry: {retry_error}"
) = self.load_vqa_model() ) from retry_error
self.analysis_type = "summary_and_questions" # now all models are loaded, so you can perform any analysis finally:
self.analyse_questions(self.list_of_questions, consequential_questions) if cudnn_was_enabled:
else: torch.backends.cudnn.enabled = True
raise ValueError(
"analysis_type must be one of {}".format(self.allowed_analysis_types) decoded = None
if "input_ids" in inputs:
in_ids = inputs["input_ids"]
trimmed = [
out_ids[len(inp_ids) :]
for inp_ids, out_ids in zip(in_ids, generated_ids)
]
decoded = self.summary_model.tokenizer.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
) )
return self.subdict
def analyse_summary(self, nondeterministic_summaries: bool = True):
"""
Create 1 constant and 3 non deterministic captions for image.
Args:
nondeterministic_summaries (bool): whether to create 3 non deterministic captions.
Returns:
self.subdict (dict): dictionary with analysis results.
"""
if self.model_type in self.allowed_model_types:
vis_processors = self.summary_vis_processors
model = self.summary_model
elif self.model_type in self.allowed_new_model_types:
vis_processors = self.summary_vqa_vis_processors_new
model = self.summary_vqa_model_new
else: else:
raise ValueError( decoded = self.summary_model.tokenizer.batch_decode(
"Model type is not allowed - please select one of {}".format( generated_ids,
self.all_allowed_model_types skip_special_tokens=True,
) clean_up_tokenization_spaces=False,
) )
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
with no_grad():
self.subdict["const_image_summary"] = model.generate({"image": image})[0]
if nondeterministic_summaries:
self.subdict["3_non-deterministic_summary"] = model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
return self.subdict
def analyse_questions( results = [d.strip() for d in decoded]
self, list_of_questions: list[str], consequential_questions: bool = False return results
) -> dict:
def answer_questions(
self,
list_of_questions: list[str],
entry: Optional[Dict[str, Any]] = None,
is_concise_answer: bool = True,
) -> List[str]:
""" """
Generate answers to free-form questions about image written in natural language. Create answers for list of questions about image.
Args: Args:
list_of_questions (list[str]): list of questions. list_of_questions (list[str]): list of questions.
consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models. entry (dict): dictionary containing the image to be captioned.
is_concise_answer (bool): whether to generate concise answers.
Returns: Returns:
self.subdict (dict): dictionary with answers to questions. answers (list[str]): list of answers.
""" """
model, vis_processors, txt_processors, model_old = self.check_model() if is_concise_answer:
if len(list_of_questions) > 0: gen_conf = GenerationConfig(max_new_tokens=64, do_sample=False)
path = self.subdict["filename"] for i in range(len(list_of_questions)):
raw_image = Image.open(path).convert("RGB") if not list_of_questions[i].strip().endswith("?"):
image = ( list_of_questions[i] = list_of_questions[i].strip() + "?"
vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device) if not list_of_questions[i].lower().startswith("answer concisely"):
) list_of_questions[i] = "Answer concisely: " + list_of_questions[i]
question_batch = [] else:
list_of_questions_processed = [] gen_conf = GenerationConfig(max_new_tokens=128, do_sample=False)
if model_old: question_chunk_size = 8
for quest in list_of_questions: answers: List[str] = []
list_of_questions_processed.append(txt_processors["eval"](quest)) n = len(list_of_questions)
for i in range(0, n, question_chunk_size):
chunk = list_of_questions[i : i + question_chunk_size]
inputs = self._prepare_inputs(chunk, entry)
with torch.inference_mode():
if self.summary_model.device == "cuda":
with torch.cuda.amp.autocast(enabled=True):
out_ids = self.summary_model.model.generate(
**inputs, generation_config=gen_conf
)
else:
out_ids = self.summary_model.model.generate(
**inputs, generation_config=gen_conf
)
if "input_ids" in inputs:
in_ids = inputs["input_ids"]
trimmed_batch = [
out_row[len(inp_row) :] for inp_row, out_row in zip(in_ids, out_ids)
]
decoded = self.summary_model.tokenizer.batch_decode(
trimmed_batch,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
else: else:
for quest in list_of_questions: decoded = self.summary_model.tokenizer.batch_decode(
list_of_questions_processed.append((str)(quest)) out_ids,
skip_special_tokens=True,
for quest in list_of_questions_processed: clean_up_tokenization_spaces=False,
question_batch.append(quest)
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
if not consequential_questions:
with no_grad():
if model_old:
answers_batch = model.predict_answers(
samples={
"image": image_batch,
"text_input": question_batch,
},
inference_method="generate",
)
else:
answers_batch = model.generate(
{"image": image_batch, "prompt": question_batch}
)
for q, a in zip(list_of_questions, answers_batch):
self.subdict[q] = a
if consequential_questions and not model_old:
query_with_context = ""
for quest in question_batch:
query_with_context = query_with_context + quest
with no_grad():
answer = model.generate(
{"image": image, "prompt": query_with_context}
)
self.subdict[query_with_context] = answer[0]
query_with_context = query_with_context + " " + answer[0] + ". "
elif consequential_questions and model_old:
raise ValueError(
"Consequential questions are not allowed for old models"
) )
else:
print("Please, enter list of questions")
return self.subdict
def check_model(self): answers.extend([d.strip() for d in decoded])
"""
Check model type and return appropriate model and preprocessors.
Args: if len(answers) != len(list_of_questions):
Returns:
model (nn.Module): model.
vis_processors (dict): visual preprocessor.
txt_processors (dict): text preprocessor.
model_old (bool): whether model is old or new.
"""
if self.model_type in self.allowed_model_types:
vis_processors = self.summary_vqa_vis_processors
model = self.summary_vqa_model
txt_processors = self.summary_vqa_txt_processors
model_old = True
elif self.model_type in self.allowed_new_model_types:
vis_processors = self.summary_vqa_vis_processors_new
model = self.summary_vqa_model_new
txt_processors = self.summary_vqa_txt_processors_new
model_old = False
else:
raise ValueError( raise ValueError(
"Model type is not allowed - please select one of {}".format( f"Expected {len(list_of_questions)} answers, but got {len(answers)}, try vary amount of questions"
self.all_allowed_model_types
)
) )
return model, vis_processors, txt_processors, model_old return answers
def load_new_model(self, model_type: str):
"""
Load new BLIP2 models.
Args:
model_type (str): type of the model.
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
select_model = {
"blip2_t5_pretrain_flant5xxl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl,
"blip2_t5_pretrain_flant5xl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xl,
"blip2_t5_caption_coco_flant5xl": SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl,
"blip2_opt_pretrain_opt2.7b": SummaryDetector.load_model_blip2_opt_pretrain_opt27b,
"blip2_opt_pretrain_opt6.7b": SummaryDetector.load_model_base_blip2_opt_pretrain_opt67b,
"blip2_opt_caption_coco_opt2.7b": SummaryDetector.load_model_blip2_opt_caption_coco_opt27b,
"blip2_opt_caption_coco_opt6.7b": SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b,
}
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = select_model[model_type](self)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_t5_pretrain_flant5xxl(self):
"""
Load BLIP2 model with FLAN-T5 XXL architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_t5",
model_type="pretrain_flant5xxl",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_t5_pretrain_flant5xl(self):
"""
Load BLIP2 model with FLAN-T5 XL architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_t5",
model_type="pretrain_flant5xl",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_t5_caption_coco_flant5xl(self):
"""
Load BLIP2 model with caption_coco_flant5xl architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_t5",
model_type="caption_coco_flant5xl",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_opt_pretrain_opt27b(self):
"""
Load BLIP2 model with pretrain_opt2 architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="pretrain_opt2.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_base_blip2_opt_pretrain_opt67b(self):
"""
Load BLIP2 model with pretrain_opt6.7b architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="pretrain_opt6.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_opt_caption_coco_opt27b(self):
"""
Load BLIP2 model with caption_coco_opt2.7b architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="caption_coco_opt2.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_base_blip2_opt_caption_coco_opt67b(self):
"""
Load BLIP2 model with caption_coco_opt6.7b architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="caption_coco_opt6.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors