| \n", - " | filename\n", - " | face\n", - " | multiple_faces\n", - " | no_faces\n", - " | wears_mask\n", - " | age\n", - " | gender\n", - " | race\n", - " | emotion\n", - " | emotion (category)\n", - " | ...\n", - " | text_language\n", - " | text_english\n", - " | text_clean\n", - " | text_summary\n", - " | sentiment\n", - " | sentiment_score\n", - " | entity\n", - " | entity_type\n", - " | const_image_summary\n", - " | 3_non-deterministic_summary\n", - " | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0\n", - " | data-test/img4.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | en\n", - " | MOODOVIN XI\n", - " | XI\n", - " | MOODOVIN XI XI: Vladimir Putin, Vladimir Vlad...\n", - " | POSITIVE\n", - " | 0.66\n", - " | [MOODOVIN XI]\n", - " | [ORG]\n", - " | a river running through a city next to tall bu...\n", - " | [buildings near a waterway with small boats pa...\n", - " | 
| 1\n", - " | data-test/img1.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | en\n", - " | SCATTERING THEORY The Quantum Theory of Nonrel...\n", - " | THEORY The Quantum Theory of Collisions JOHN R...\n", - " | SCATTERING THEORY The Quantum Theory of Nonre...\n", - " | POSITIVE\n", - " | 0.91\n", - " | [Non, ##vist, Col, ##N, R, T, ##AYL, Universit...\n", - " | [MISC, MISC, MISC, ORG, PER, PER, ORG, ORG]\n", - " | a close up of a piece of paper with writing on it\n", - " | [a white paper with some black writing on it, ...\n", - " | 
| 2\n", - " | data-test/img2.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | en\n", - " | THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO M...\n", - " | THE PROBLEM DOM NVS TIO MINA Monographs on Num...\n", - " | H. H. W. WILKINSON: The Algebri\n", - " | NEGATIVE\n", - " | 0.97\n", - " | [ALGEBRAIC EIGENVAL, NVS TIO MI, J, H, WILKINSON]\n", - " | [MISC, ORG, ORG, ORG, ORG]\n", - " | a yellow book with green lettering on it\n", - " | [an old book with a picture of the slogan of t...\n", - " | 
3 rows × 21 columns
\n", - "| \n", - " | filename\n", - " | face\n", - " | multiple_faces\n", - " | no_faces\n", - " | wears_mask\n", - " | age\n", - " | gender\n", - " | race\n", - " | emotion\n", - " | emotion (category)\n", - " | ...\n", - " | blue\n", - " | yellow\n", - " | cyan\n", - " | orange\n", - " | purple\n", - " | pink\n", - " | brown\n", - " | grey\n", - " | white\n", - " | black\n", - " | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0\n", - " | data-test/img4.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | 0.16\n", - " | 0.00\n", - " | 0\n", - " | 0\n", - " | 0.00\n", - " | 0\n", - " | 0.10\n", - " | 0.42\n", - " | 0.05\n", - " | 0.21\n", - " | 
| 1\n", - " | data-test/img1.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | 0.00\n", - " | 0.00\n", - " | 0\n", - " | 0\n", - " | 0.00\n", - " | 0\n", - " | 0.00\n", - " | 0.96\n", - " | 0.00\n", - " | 0.04\n", - " | 
| 2\n", - " | data-test/img2.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | 0.00\n", - " | 0.75\n", - " | 0\n", - " | 0\n", - " | 0.00\n", - " | 0\n", - " | 0.04\n", - " | 0.15\n", - " | 0.00\n", - " | 0.02\n", - " | 
| 3\n", - " | data-test/img3.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | 0.00\n", - " | 0.00\n", - " | 0\n", - " | 0\n", - " | 0.02\n", - " | 0\n", - " | 0.06\n", - " | 0.92\n", - " | 0.01\n", - " | 0.00\n", - " | 
| 4\n", - " | data-test/img0.png\n", - " | No\n", - " | No\n", - " | 0\n", - " | [No]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | [None]\n", - " | ...\n", - " | 0.00\n", - " | 0.00\n", - " | 0\n", - " | 0\n", - " | 0.00\n", - " | 0\n", - " | 0.00\n", - " | 0.98\n", - " | 0.00\n", - " | 0.02\n", - " | 
| 5\n", - " | data-test/img5.png\n", - " | Yes\n", - " | No\n", - " | 1\n", - " | [No]\n", - " | [26]\n", - " | [Man]\n", - " | [None]\n", - " | [sad]\n", - " | [Negative]\n", - " | ...\n", - " | 0.12\n", - " | 0.00\n", - " | 0\n", - " | 0\n", - " | 0.00\n", - " | 0\n", - " | 0.02\n", - " | 0.50\n", - " | 0.00\n", - " | 0.00\n", - " | 
6 rows × 33 columns
\n", - "pip install git+https://github.com/ssciwr/AMMICO.git[1]:
+[ ]:
 
 
 # if running on google colab
@@ -144,8 +144,8 @@
 
 Use a test dataset
 You can download a dataset for test purposes. Skip this step if you use your own data.
-
-[2]:
+
+[ ]:
 
 
 from datasets import load_dataset
@@ -156,456 +156,9 @@
 
 
 
-
-
-
-
-
-/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
-  from .autonotebook import tqdm as notebook_tqdm
-
-
-
-
-
-
-
-
-
-- Downloading readme:   0%|          | 0.00/21.0 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading readme:   0%|          | 0.00/21.0 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading readme:   0%|          | 0.00/21.0 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading readme: 100%|██████████| 21.0/21.0 [00:00<00:00, 178kB/s]
- 
-- </pre> -
 -
-- Downloading readme: 100%|██████████| 21.0/21.0 [00:00<00:00, 178kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading readme: 100%|██████████| 21.0/21.0 [00:00<00:00, 178kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Downloading data:   0%|          | 0.00/59.0k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading data:   0%|          | 0.00/59.0k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data:   0%|          | 0.00/59.0k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 59.0k/59.0k [00:00<00:00, 158kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 59.0k/59.0k [00:00<00:00, 158kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 59.0k/59.0k [00:00<00:00, 158kB/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 59.0k/59.0k [00:00<00:00, 158kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 59.0k/59.0k [00:00<00:00, 158kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 59.0k/59.0k [00:00<00:00, 158kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Downloading data:   0%|          | 0.00/48.8k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading data:   0%|          | 0.00/48.8k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data:   0%|          | 0.00/48.8k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 48.8k/48.8k [00:00<00:00, 167kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 48.8k/48.8k [00:00<00:00, 167kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 48.8k/48.8k [00:00<00:00, 167kB/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 48.8k/48.8k [00:00<00:00, 166kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 48.8k/48.8k [00:00<00:00, 166kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 48.8k/48.8k [00:00<00:00, 166kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Downloading data:   0%|          | 0.00/43.4k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading data:   0%|          | 0.00/43.4k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data:   0%|          | 0.00/43.4k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 43.4k/43.4k [00:00<00:00, 153kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 43.4k/43.4k [00:00<00:00, 153kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 43.4k/43.4k [00:00<00:00, 153kB/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 43.4k/43.4k [00:00<00:00, 152kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 43.4k/43.4k [00:00<00:00, 152kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 43.4k/43.4k [00:00<00:00, 152kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Downloading data:   0%|          | 0.00/315k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading data:   0%|          | 0.00/315k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data:   0%|          | 0.00/315k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 315k/315k [00:00<00:00, 748kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 315k/315k [00:00<00:00, 748kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 315k/315k [00:00<00:00, 748kB/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 315k/315k [00:00<00:00, 746kB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 315k/315k [00:00<00:00, 746kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 315k/315k [00:00<00:00, 746kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Downloading data:   0%|          | 0.00/1.33M [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading data:   0%|          | 0.00/1.33M [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data:   0%|          | 0.00/1.33M [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 1.33M/1.33M [00:00<00:00, 3.27MB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 1.33M/1.33M [00:00<00:00, 3.27MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 1.33M/1.33M [00:00<00:00, 3.27MB/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 1.33M/1.33M [00:00<00:00, 3.26MB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 1.33M/1.33M [00:00<00:00, 3.26MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 1.33M/1.33M [00:00<00:00, 3.26MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Downloading data:   0%|          | 0.00/687k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- Downloading data:   0%|          | 0.00/687k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data:   0%|          | 0.00/687k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 687k/687k [00:00<00:00, 1.89MB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 687k/687k [00:00<00:00, 1.89MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 687k/687k [00:00<00:00, 1.89MB/s]
-
-
-
-
-
-
-
-- Downloading data: 100%|██████████| 687k/687k [00:00<00:00, 1.89MB/s]
- 
-- </pre> -
 -
-- Downloading data: 100%|██████████| 687k/687k [00:00<00:00, 1.89MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Downloading data: 100%|██████████| 687k/687k [00:00<00:00, 1.89MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- Generating train split: 0 examples [00:00, ? examples/s]
- 
-- </pre> -
 -
-- Generating train split: 0 examples [00:00, ? examples/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Generating train split: 0 examples [00:00, ? examples/s]
-
-
-
-
-
-
-
-- Generating train split: 6 examples [00:00, 423.54 examples/s]
- 
-- </pre> -
 -
-- Generating train split: 6 examples [00:00, 423.54 examples/s]
- 
-- end{sphinxVerbatim} -
 -
-
-Generating train split: 6 examples [00:00, 423.54 examples/s]
-
-
-
-
-
-
-
-
 Next you need to provide a path for the saved images - a folder where the data is stored locally. This directory is automatically created if it does not exist.
 
-[3]:
+[ ]:
 
 
 data_path = "./data-test"
@@ -622,7 +175,7 @@
 
 Import the ammico package.
 
-[4]:
+[ ]:
 
 
 import os
@@ -650,7 +203,7 @@ tf.ones([2, 2])
 
 where you place the key on your Google Drive if running on colab, or place it in a local folder on your machine.
 
-[5]:
+[ ]:
 
 
 # os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/content/drive/MyDrive/misinformation-data/misinformation-campaign-981aa55a3b13.json"
@@ -694,7 +247,7 @@ tf.ones([2, 2])
 The find_files function returns a nested dict that contains the file ids and the paths to the files and is empty otherwise. This dict is filled step by step with more data as each detector class is run on the data (see below).
 If you downloaded the test dataset above, you can directly provide the path you already set for the test directory, data_path.
 
-[6]:
+[ ]:
 
 
 image_dict = ammico.find_files(
@@ -710,8 +263,8 @@ tf.ones([2, 2])
 A Dash user interface is to select the most suitable options for the analysis, before running a complete analysis on the whole data set. The options for each detector module are explained below in the corresponding sections; for example, different models can be selected that will provide slightly different results. This way, the user can interactively explore which settings provide the most accurate results. In the interface, the nested image_dict is passed through the AnalysisExplorer
 class. The interface is run on a specific port which is passed using the port keyword; if a port is already in use, it will return an error message, in which case the user should select a different port number. The interface opens a dash app inside the Jupyter Notebook and allows selection of the input file in the top left dropdown menu, as well as selection of the detector type in the top right, with options for each detector type as explained below. The output of the detector is shown
 directly on the right next to the image. This way, the user can directly inspect how updating the options for each detector changes the computed results, and find the best settings for a production run.
-
-[7]:
+
+[ ]:
 
 
 analysis_explorer = ammico.AnalysisExplorer(image_dict)
@@ -719,26 +272,13 @@ directly on the right next to the image. This way, the user can directly inspect
 
 
 
-
-
-
-
-
-
 
 
 Step 3: Analyze all images
 The analysis can be run in production on all images in the data set. Depending on the size of the data set and the computing resources available, this can take some time.
 It is also possible to set the dump file creation dump_file in order to save the calculated data every dump_every images.
 
-[8]:
+[ ]:
 
 
 # dump file name
@@ -749,8 +289,8 @@ directly on the right next to the image. This way, the user can directly inspect
 
 
 The desired detector modules are called sequentially in any order, for example the EmotionDetector:
-
-[9]:
+
+[ ]:
 
 
 for num, key in tqdm(enumerate(image_dict.keys()), total=len(image_dict)):    # loop through all images
@@ -762,442 +302,9 @@ directly on the right next to the image. This way, the user can directly inspect
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- </pre> -
 -
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0/6 [00:00<?, ?it/s]
-
-
-
-
-
-
-
-Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/retinaface.h5' to file '/home/runner/.cache/pooch/3be32af6e4183fa0156bc33bda371147-retinaface.h5'.
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 1/6 [00:08<00:41,  8.32s/it]
- 
-- </pre> -
 -
-- 17%|█▋        | 1/6 [00:08<00:41,  8.32s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 1/6 [00:08<00:41,  8.32s/it]
-
-
-
-
-
-
-
-Found missing key(s) {'no_faces', 'age', 'wears_mask', 'emotion (category)', 'multiple_faces', 'emotion', 'gender', 'race', 'face'} in subdict img1 - setting to None.
-Found missing key(s) {'no_faces', 'age', 'wears_mask', 'emotion (category)', 'multiple_faces', 'emotion', 'gender', 'race', 'face'} in subdict img2 - setting to None.
-Found missing key(s) {'no_faces', 'age', 'wears_mask', 'emotion (category)', 'multiple_faces', 'emotion', 'gender', 'race', 'face'} in subdict img3 - setting to None.
-Found missing key(s) {'no_faces', 'age', 'wears_mask', 'emotion (category)', 'multiple_faces', 'emotion', 'gender', 'race', 'face'} in subdict img0 - setting to None.
-Found missing key(s) {'no_faces', 'age', 'wears_mask', 'emotion (category)', 'multiple_faces', 'emotion', 'gender', 'race', 'face'} in subdict img5 - setting to None.
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 2/6 [00:10<00:19,  4.89s/it]
- 
-- </pre> -
 -
-- 33%|███▎      | 2/6 [00:10<00:19,  4.89s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 2/6 [00:10<00:19,  4.89s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 3/6 [00:13<00:11,  3.70s/it]
- 
-- </pre> -
 -
-- 50%|█████     | 3/6 [00:13<00:11,  3.70s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 3/6 [00:13<00:11,  3.70s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 4/6 [00:15<00:06,  3.14s/it]
- 
-- </pre> -
 -
-- 67%|██████▋   | 4/6 [00:15<00:06,  3.14s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 4/6 [00:15<00:06,  3.14s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 5/6 [00:17<00:02,  2.82s/it]
- 
-- </pre> -
 -
-- 83%|████████▎ | 5/6 [00:17<00:02,  2.82s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 5/6 [00:17<00:02,  2.82s/it]
-
-
-
-
-
-
-
-Downloading data from 'https://github.com/chandrikadeb7/Face-Mask-Detection/raw/v1.0.0/mask_detector.model' to file '/home/runner/.cache/pooch/865b4b1e20f798935b70082440d5fb21-mask_detector.model'.
-
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 1s 523ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 1s 523ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 1s 523ms/step
-
-
-
-
-
-Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5' to file '/home/runner/.cache/pooch/39859d3331cd91ac06154cc306e1acc8-age_model_weights.h5'.
-
-
-
-
-
-
-
-Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5' to file '/home/runner/.cache/pooch/dd5d5d6d8f5cecdc0fa6cb34d4d82d16-facial_expression_model_weights.h5'.
-
-
-
-
-
-
-
-Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5' to file '/home/runner/.cache/pooch/2e0d8fb96c5ee966ade0f3f2360f6478-gender_model_weights.h5'.
-
-
-
-
-
-
-
-Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5' to file '/home/runner/.cache/pooch/382cb5446128012fa5305ddb9d608751-race_model_single_batch.h5'.
-
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 319ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 319ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 319ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 324ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 324ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 324ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 320ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 320ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 320ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 62ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 62ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 62ms/step
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:02<00:00, 17.17s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:02<00:00, 17.17s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:02<00:00, 17.17s/it]
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:02<00:00, 10.44s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:02<00:00, 10.44s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:02<00:00, 10.44s/it]
-
-
-
-
-
-
-
-
 TextDetector:
-
-[10]:
+
+[ ]:
 
 
 for num, key in tqdm(enumerate(image_dict.keys()), total=len(image_dict)):  # loop through all images
@@ -1209,7573 +316,9 @@ Downloading data from 'https://github.com/serengil/deepface_models/releases/
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- </pre> -
 -
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0/6 [00:00<?, ?it/s]
-
-
-
-
-
-
-
-Collecting en-core-web-md==3.7.1
-
-
-
-
-
-
-   
-     Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.7.1/en_core_web_md-3.7.1-py3-none-any.whl (42.8 MB)
-        ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/42.8 MB ? eta -:--:--
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.4/42.8 MB 11.6 MB/s eta 0:00:04
-╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.0/42.8 MB 14.9 MB/s eta 0:00:03
-━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.8/42.8 MB 17.9 MB/s eta 0:00:03
-━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.8/42.8 MB 20.5 MB/s eta 0:00:02
-━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.1/42.8 MB 23.5 MB/s eta 0:00:02
-   
-
-[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m0.4/42.8 MB[0m [31m11.6 MB/s[0m eta [36m0:00:04[0m
-[2K     [91m╸[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.0/42.8 MB[0m [31m14.9 MB/s[0m eta [36m0:00:03[0m
-[2K     [91m━[0m[91m╸[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.8/42.8 MB[0m [31m17.9 MB/s[0m eta [36m0:00:03[0m
-[2K     [91m━━[0m[91m╸[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m2.8/42.8 MB[0m [31m20.5 MB/s[0m eta [36m0:00:02[0m
-[2K     [91m━━━[0m[91m╸[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m4.1/42.8 MB[0m [31m23.5 MB/s[0m eta [36m0:00:02[0m
-
-
-
-
-   
-
-━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.6/42.8 MB 26.6 MB/s eta 0:00:02
-━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.4/42.8 MB 30.2 MB/s eta 0:00:02
-━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 9.5/42.8 MB 34.0 MB/s eta 0:00:01
-━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.2/42.8 MB 49.2 MB/s eta 0:00:01
-━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━ 15.3/42.8 MB 68.1 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━ 19.3/42.8 MB 92.4 MB/s eta 0:00:01
-   
-
-[2K     [91m━━━━━[0m[90m╺[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m5.6/42.8 MB[0m [31m26.6 MB/s[0m eta [36m0:00:02[0m
-[2K     [91m━━━━━━[0m[91m╸[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m7.4/42.8 MB[0m [31m30.2 MB/s[0m eta [36m0:00:02[0m
-[2K     [91m━━━━━━━━[0m[91m╸[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m9.5/42.8 MB[0m [31m34.0 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━[0m[90m╺[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m12.2/42.8 MB[0m [31m49.2 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━[0m[90m╺[0m[90m━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m15.3/42.8 MB[0m [31m68.1 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━━━━━[0m[90m╺[0m[90m━━━━━━━━━━━━━━━━━━━━━[0m [32m19.3/42.8 MB[0m [31m92.4 MB/s[0m eta [36m0:00:01[0m
-
-
-
-
-   
-
-━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━ 23.8/42.8 MB 115.6 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━ 28.2/42.8 MB 125.8 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━ 32.9/42.8 MB 128.8 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━ 37.8/42.8 MB 134.9 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 145.2 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 145.2 MB/s eta 0:00:01
-   
-
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m[90m━━━━━━━━━━━━━━━━━[0m [32m23.8/42.8 MB[0m [31m115.6 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m[90m━━━━━━━━━━━━━[0m [32m28.2/42.8 MB[0m [31m125.8 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m[90m━━━━━━━━━[0m [32m32.9/42.8 MB[0m [31m128.8 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[90m╺[0m[90m━━━━[0m [32m37.8/42.8 MB[0m [31m134.9 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m42.8/42.8 MB[0m [31m145.2 MB/s[0m eta [36m0:00:01[0m
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m42.8/42.8 MB[0m [31m145.2 MB/s[0m eta [36m0:00:01[0m
-
-
-
-
-   
-
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 145.2 MB/s eta 0:00:01
-━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.8/42.8 MB 60.8 MB/s eta 0:00:00
-   Requirement already satisfied: spacy<3.8.0,>=3.7.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from en-core-web-md==3.7.1) (3.7.4)
-   Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.0.12)
-   Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.0.5)
-   Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.0.10)
-   Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.0.8)
-   Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.0.9)
-   Requirement already satisfied: thinc<8.3.0,>=8.2.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (8.2.3)
-   Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.1.2)
-   Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.4.8)
-   Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.0.10)
-   Requirement already satisfied: weasel<0.4.0,>=0.1.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.3.4)
-   Requirement already satisfied: typer<0.10.0,>=0.3.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.9.0)
-   Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (6.4.0)
-   Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (4.66.2)
-   Requirement already satisfied: requests<3.0.0,>=2.13.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.31.0)
-   Requirement already satisfied: pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.10.14)
-   Requirement already satisfied: jinja2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.1.3)
-   Requirement already satisfied: setuptools in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (58.1.0)
-   Requirement already satisfied: packaging>=20.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (23.2)
-   Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.3.0)
-   Requirement already satisfied: numpy>=1.19.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.23.4)
-   Requirement already satisfied: typing-extensions>=4.2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (4.5.0)
-   Requirement already satisfied: charset-normalizer<4,>=2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.3.2)
-   Requirement already satisfied: idna<4,>=2.5 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.10)
-   Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.2.1)
-   Requirement already satisfied: certifi>=2017.4.17 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2024.2.2)
-   
-
-[2K     [91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m[91m╸[0m [32m42.8/42.8 MB[0m [31m145.2 MB/s[0m eta [36m0:00:01[0m
-[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m42.8/42.8 MB[0m [31m60.8 MB/s[0m eta [36m0:00:00[0m
-
-[?25hRequirement already satisfied: spacy<3.8.0,>=3.7.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from en-core-web-md==3.7.1) (3.7.4)
-Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.0.12)
-Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.0.5)
-Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.0.10)
-Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.0.8)
-Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.0.9)
-Requirement already satisfied: thinc<8.3.0,>=8.2.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (8.2.3)
-Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.1.2)
-Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.4.8)
-Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.0.10)
-Requirement already satisfied: weasel<0.4.0,>=0.1.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.3.4)
-Requirement already satisfied: typer<0.10.0,>=0.3.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.9.0)
-Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (6.4.0)
-Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (4.66.2)
-Requirement already satisfied: requests<3.0.0,>=2.13.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.31.0)
-Requirement already satisfied: pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.10.14)
-Requirement already satisfied: jinja2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.1.3)
-Requirement already satisfied: setuptools in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (58.1.0)
-Requirement already satisfied: packaging>=20.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (23.2)
-Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.3.0)
-Requirement already satisfied: numpy>=1.19.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.23.4)
-Requirement already satisfied: typing-extensions>=4.2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (4.5.0)
-Requirement already satisfied: charset-normalizer<4,>=2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.3.2)
-Requirement already satisfied: idna<4,>=2.5 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.10)
-Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.2.1)
-Requirement already satisfied: certifi>=2017.4.17 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2024.2.2)
-
-
-
-
-
-
-Requirement already satisfied: blis<0.8.0,>=0.7.8 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from thinc<8.3.0,>=8.2.2->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.7.11)
-Requirement already satisfied: confection<1.0.0,>=0.0.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from thinc<8.3.0,>=8.2.2->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.1.4)
-Requirement already satisfied: click<9.0.0,>=7.1.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from typer<0.10.0,>=0.3.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (8.1.7)
-Requirement already satisfied: cloudpathlib<0.17.0,>=0.7.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from weasel<0.4.0,>=0.1.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.16.0)
-Requirement already satisfied: MarkupSafe>=2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from jinja2->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.1.5)
-
-
-
-
-
-
-
-Installing collected packages: en-core-web-md
-
-
-
-
-
-
-
-Successfully installed en-core-web-md-3.7.1
-✔ Download and installation successful
-You can now load the package via spacy.load('en_core_web_md')
-⚠ Restart to reload dependencies
-If you are in a Jupyter or Colab notebook, you may need to restart Python in
-order to load all the package's dependencies. You can do this by selecting the
-'Restart kernel' or 'Restart runtime' option.
-
-
-
-
-
-
-
-
-[notice] A new release of pip is available: 23.0.1 -> 24.0
-[notice] To update, run: pip install --upgrade pip
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json:   0%|          | 0.00/1.80k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- config.json:   0%|          | 0.00/1.80k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json:   0%|          | 0.00/1.80k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json: 100%|██████████| 1.80k/1.80k [00:00<00:00, 731kB/s]
- 
-- </pre> -
 -
-- config.json: 100%|██████████| 1.80k/1.80k [00:00<00:00, 731kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json: 100%|██████████| 1.80k/1.80k [00:00<00:00, 731kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   0%|          | 0.00/1.22G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   0%|          | 0.00/1.22G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   0%|          | 0.00/1.22G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   2%|▏         | 21.0M/1.22G [00:00<00:08, 142MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   2%|▏         | 21.0M/1.22G [00:00<00:08, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   2%|▏         | 21.0M/1.22G [00:00<00:08, 142MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   3%|▎         | 41.9M/1.22G [00:00<00:06, 175MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   3%|▎         | 41.9M/1.22G [00:00<00:06, 175MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   3%|▎         | 41.9M/1.22G [00:00<00:06, 175MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   6%|▌         | 73.4M/1.22G [00:00<00:05, 193MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   6%|▌         | 73.4M/1.22G [00:00<00:05, 193MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   6%|▌         | 73.4M/1.22G [00:00<00:05, 193MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   8%|▊         | 94.4M/1.22G [00:00<00:05, 198MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   8%|▊         | 94.4M/1.22G [00:00<00:05, 198MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   8%|▊         | 94.4M/1.22G [00:00<00:05, 198MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   9%|▉         | 115M/1.22G [00:00<00:05, 198MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   9%|▉         | 115M/1.22G [00:00<00:05, 198MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   9%|▉         | 115M/1.22G [00:00<00:05, 198MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  11%|█         | 136M/1.22G [00:00<00:05, 201MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  11%|█         | 136M/1.22G [00:00<00:05, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  11%|█         | 136M/1.22G [00:00<00:05, 201MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  13%|█▎        | 157M/1.22G [00:00<00:05, 201MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  13%|█▎        | 157M/1.22G [00:00<00:05, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  13%|█▎        | 157M/1.22G [00:00<00:05, 201MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  15%|█▍        | 178M/1.22G [00:00<00:05, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  15%|█▍        | 178M/1.22G [00:00<00:05, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  15%|█▍        | 178M/1.22G [00:00<00:05, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  16%|█▋        | 199M/1.22G [00:01<00:05, 204MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  16%|█▋        | 199M/1.22G [00:01<00:05, 204MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  16%|█▋        | 199M/1.22G [00:01<00:05, 204MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  18%|█▊        | 220M/1.22G [00:01<00:04, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  18%|█▊        | 220M/1.22G [00:01<00:04, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  18%|█▊        | 220M/1.22G [00:01<00:04, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  20%|█▉        | 241M/1.22G [00:01<00:04, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  20%|█▉        | 241M/1.22G [00:01<00:04, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  20%|█▉        | 241M/1.22G [00:01<00:04, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  21%|██▏       | 262M/1.22G [00:01<00:04, 204MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  21%|██▏       | 262M/1.22G [00:01<00:04, 204MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  21%|██▏       | 262M/1.22G [00:01<00:04, 204MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  23%|██▎       | 283M/1.22G [00:01<00:04, 204MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  23%|██▎       | 283M/1.22G [00:01<00:04, 204MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  23%|██▎       | 283M/1.22G [00:01<00:04, 204MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  25%|██▍       | 304M/1.22G [00:01<00:04, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  25%|██▍       | 304M/1.22G [00:01<00:04, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  25%|██▍       | 304M/1.22G [00:01<00:04, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  27%|██▋       | 325M/1.22G [00:01<00:04, 201MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  27%|██▋       | 325M/1.22G [00:01<00:04, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  27%|██▋       | 325M/1.22G [00:01<00:04, 201MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  28%|██▊       | 346M/1.22G [00:01<00:04, 201MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  28%|██▊       | 346M/1.22G [00:01<00:04, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  28%|██▊       | 346M/1.22G [00:01<00:04, 201MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  30%|███       | 367M/1.22G [00:01<00:04, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  30%|███       | 367M/1.22G [00:01<00:04, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  30%|███       | 367M/1.22G [00:01<00:04, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  32%|███▏      | 388M/1.22G [00:01<00:04, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  32%|███▏      | 388M/1.22G [00:01<00:04, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  32%|███▏      | 388M/1.22G [00:01<00:04, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  34%|███▍      | 419M/1.22G [00:02<00:03, 206MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  34%|███▍      | 419M/1.22G [00:02<00:03, 206MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  34%|███▍      | 419M/1.22G [00:02<00:03, 206MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  37%|███▋      | 451M/1.22G [00:02<00:03, 205MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  37%|███▋      | 451M/1.22G [00:02<00:03, 205MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  37%|███▋      | 451M/1.22G [00:02<00:03, 205MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  39%|███▊      | 472M/1.22G [00:02<00:03, 205MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  39%|███▊      | 472M/1.22G [00:02<00:03, 205MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  39%|███▊      | 472M/1.22G [00:02<00:03, 205MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  40%|████      | 493M/1.22G [00:02<00:03, 203MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  40%|████      | 493M/1.22G [00:02<00:03, 203MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  40%|████      | 493M/1.22G [00:02<00:03, 203MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  42%|████▏     | 514M/1.22G [00:02<00:03, 204MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  42%|████▏     | 514M/1.22G [00:02<00:03, 204MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  42%|████▏     | 514M/1.22G [00:02<00:03, 204MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  44%|████▍     | 535M/1.22G [00:03<00:15, 43.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  44%|████▍     | 535M/1.22G [00:03<00:15, 43.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  44%|████▍     | 535M/1.22G [00:03<00:15, 43.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  45%|████▌     | 556M/1.22G [00:04<00:12, 52.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  45%|████▌     | 556M/1.22G [00:04<00:12, 52.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  45%|████▌     | 556M/1.22G [00:04<00:12, 52.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  47%|████▋     | 577M/1.22G [00:04<00:10, 64.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  47%|████▋     | 577M/1.22G [00:04<00:10, 64.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  47%|████▋     | 577M/1.22G [00:04<00:10, 64.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  49%|████▉     | 598M/1.22G [00:04<00:08, 77.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  49%|████▉     | 598M/1.22G [00:04<00:08, 77.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  49%|████▉     | 598M/1.22G [00:04<00:08, 77.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  51%|█████     | 619M/1.22G [00:04<00:06, 90.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  51%|█████     | 619M/1.22G [00:04<00:06, 90.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  51%|█████     | 619M/1.22G [00:04<00:06, 90.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  52%|█████▏    | 640M/1.22G [00:06<00:16, 36.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  52%|█████▏    | 640M/1.22G [00:06<00:16, 36.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  52%|█████▏    | 640M/1.22G [00:06<00:16, 36.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  54%|█████▍    | 661M/1.22G [00:07<00:21, 25.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  54%|█████▍    | 661M/1.22G [00:07<00:21, 25.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  54%|█████▍    | 661M/1.22G [00:07<00:21, 25.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  56%|█████▌    | 682M/1.22G [00:07<00:16, 33.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  56%|█████▌    | 682M/1.22G [00:07<00:16, 33.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  56%|█████▌    | 682M/1.22G [00:07<00:16, 33.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  57%|█████▋    | 703M/1.22G [00:07<00:11, 44.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  57%|█████▋    | 703M/1.22G [00:07<00:11, 44.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  57%|█████▋    | 703M/1.22G [00:07<00:11, 44.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  59%|█████▉    | 724M/1.22G [00:07<00:08, 58.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  59%|█████▉    | 724M/1.22G [00:07<00:08, 58.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  59%|█████▉    | 724M/1.22G [00:07<00:08, 58.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  61%|██████    | 744M/1.22G [00:07<00:06, 74.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  61%|██████    | 744M/1.22G [00:07<00:06, 74.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  61%|██████    | 744M/1.22G [00:07<00:06, 74.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  63%|██████▎   | 765M/1.22G [00:07<00:04, 91.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  63%|██████▎   | 765M/1.22G [00:07<00:04, 91.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  63%|██████▎   | 765M/1.22G [00:07<00:04, 91.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  64%|██████▍   | 786M/1.22G [00:08<00:03, 110MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  64%|██████▍   | 786M/1.22G [00:08<00:03, 110MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  64%|██████▍   | 786M/1.22G [00:08<00:03, 110MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  66%|██████▌   | 807M/1.22G [00:08<00:03, 128MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  66%|██████▌   | 807M/1.22G [00:08<00:03, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  66%|██████▌   | 807M/1.22G [00:08<00:03, 128MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  68%|██████▊   | 828M/1.22G [00:08<00:02, 143MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  68%|██████▊   | 828M/1.22G [00:08<00:02, 143MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  68%|██████▊   | 828M/1.22G [00:08<00:02, 143MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  69%|██████▉   | 849M/1.22G [00:08<00:02, 156MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  69%|██████▉   | 849M/1.22G [00:08<00:02, 156MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  69%|██████▉   | 849M/1.22G [00:08<00:02, 156MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  71%|███████   | 870M/1.22G [00:08<00:02, 160MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  71%|███████   | 870M/1.22G [00:08<00:02, 160MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  71%|███████   | 870M/1.22G [00:08<00:02, 160MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  73%|███████▎  | 891M/1.22G [00:08<00:01, 170MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  73%|███████▎  | 891M/1.22G [00:08<00:01, 170MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  73%|███████▎  | 891M/1.22G [00:08<00:01, 170MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  75%|███████▍  | 912M/1.22G [00:08<00:01, 174MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  75%|███████▍  | 912M/1.22G [00:08<00:01, 174MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  75%|███████▍  | 912M/1.22G [00:08<00:01, 174MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  76%|███████▋  | 933M/1.22G [00:08<00:01, 179MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  76%|███████▋  | 933M/1.22G [00:08<00:01, 179MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  76%|███████▋  | 933M/1.22G [00:08<00:01, 179MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  78%|███████▊  | 954M/1.22G [00:08<00:01, 184MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  78%|███████▊  | 954M/1.22G [00:08<00:01, 184MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  78%|███████▊  | 954M/1.22G [00:08<00:01, 184MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  80%|███████▉  | 975M/1.22G [00:09<00:01, 188MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  80%|███████▉  | 975M/1.22G [00:09<00:01, 188MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  80%|███████▉  | 975M/1.22G [00:09<00:01, 188MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  81%|████████▏ | 996M/1.22G [00:10<00:05, 39.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  81%|████████▏ | 996M/1.22G [00:10<00:05, 39.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  81%|████████▏ | 996M/1.22G [00:10<00:05, 39.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  83%|████████▎ | 1.02G/1.22G [00:10<00:04, 50.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  83%|████████▎ | 1.02G/1.22G [00:10<00:04, 50.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  83%|████████▎ | 1.02G/1.22G [00:10<00:04, 50.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  85%|████████▍ | 1.04G/1.22G [00:10<00:02, 62.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  85%|████████▍ | 1.04G/1.22G [00:10<00:02, 62.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  85%|████████▍ | 1.04G/1.22G [00:10<00:02, 62.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  87%|████████▋ | 1.06G/1.22G [00:11<00:02, 76.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  87%|████████▋ | 1.06G/1.22G [00:11<00:02, 76.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  87%|████████▋ | 1.06G/1.22G [00:11<00:02, 76.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  88%|████████▊ | 1.08G/1.22G [00:11<00:01, 91.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  88%|████████▊ | 1.08G/1.22G [00:11<00:01, 91.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  88%|████████▊ | 1.08G/1.22G [00:11<00:01, 91.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  90%|█████████ | 1.10G/1.22G [00:11<00:01, 109MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  90%|█████████ | 1.10G/1.22G [00:11<00:01, 109MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  90%|█████████ | 1.10G/1.22G [00:11<00:01, 109MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  92%|█████████▏| 1.12G/1.22G [00:11<00:00, 126MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  92%|█████████▏| 1.12G/1.22G [00:11<00:00, 126MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  92%|█████████▏| 1.12G/1.22G [00:11<00:00, 126MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  94%|█████████▎| 1.14G/1.22G [00:11<00:00, 142MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  94%|█████████▎| 1.14G/1.22G [00:11<00:00, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  94%|█████████▎| 1.14G/1.22G [00:11<00:00, 142MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  96%|█████████▌| 1.17G/1.22G [00:11<00:00, 163MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  96%|█████████▌| 1.17G/1.22G [00:11<00:00, 163MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  96%|█████████▌| 1.17G/1.22G [00:11<00:00, 163MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  98%|█████████▊| 1.20G/1.22G [00:11<00:00, 171MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  98%|█████████▊| 1.20G/1.22G [00:11<00:00, 171MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  98%|█████████▊| 1.20G/1.22G [00:11<00:00, 171MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:11<00:00, 182MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:11<00:00, 182MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:11<00:00, 182MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:11<00:00, 103MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:11<00:00, 103MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:11<00:00, 103MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json:   0%|          | 0.00/26.0 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- tokenizer_config.json:   0%|          | 0.00/26.0 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json:   0%|          | 0.00/26.0 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 31.8kB/s]
- 
-- </pre> -
 -
-- tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 31.8kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 31.8kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.json:   0%|          | 0.00/899k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- vocab.json:   0%|          | 0.00/899k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.json:   0%|          | 0.00/899k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.69MB/s]
- 
-- </pre> -
 -
-- vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.69MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.69MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.62MB/s]
- 
-- </pre> -
 -
-- vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.62MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.62MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- merges.txt:   0%|          | 0.00/456k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- merges.txt:   0%|          | 0.00/456k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-merges.txt:   0%|          | 0.00/456k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.35MB/s]
- 
-- </pre> -
 -
-- merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.35MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.35MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.32MB/s]
- 
-- </pre> -
 -
-- merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.32MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.32MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json:   0%|          | 0.00/629 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- config.json:   0%|          | 0.00/629 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json:   0%|          | 0.00/629 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json: 100%|██████████| 629/629 [00:00<00:00, 128kB/s]
- 
-- </pre> -
 -
-- config.json: 100%|██████████| 629/629 [00:00<00:00, 128kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json: 100%|██████████| 629/629 [00:00<00:00, 128kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   0%|          | 0.00/268M [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   0%|          | 0.00/268M [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   0%|          | 0.00/268M [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   4%|▍         | 10.5M/268M [00:00<00:06, 42.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   4%|▍         | 10.5M/268M [00:00<00:06, 42.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   4%|▍         | 10.5M/268M [00:00<00:06, 42.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  16%|█▌        | 41.9M/268M [00:00<00:01, 123MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  16%|█▌        | 41.9M/268M [00:00<00:01, 123MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  16%|█▌        | 41.9M/268M [00:00<00:01, 123MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  27%|██▋       | 73.4M/268M [00:00<00:01, 164MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  27%|██▋       | 73.4M/268M [00:00<00:01, 164MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  27%|██▋       | 73.4M/268M [00:00<00:01, 164MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  39%|███▉      | 105M/268M [00:00<00:00, 186MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  39%|███▉      | 105M/268M [00:00<00:00, 186MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  39%|███▉      | 105M/268M [00:00<00:00, 186MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  51%|█████     | 136M/268M [00:00<00:00, 196MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  51%|█████     | 136M/268M [00:00<00:00, 196MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  51%|█████     | 136M/268M [00:00<00:00, 196MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  63%|██████▎   | 168M/268M [00:00<00:00, 201MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  63%|██████▎   | 168M/268M [00:00<00:00, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  63%|██████▎   | 168M/268M [00:00<00:00, 201MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  70%|███████   | 189M/268M [00:01<00:00, 202MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  70%|███████   | 189M/268M [00:01<00:00, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  70%|███████   | 189M/268M [00:01<00:00, 202MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  78%|███████▊  | 210M/268M [00:01<00:00, 203MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  78%|███████▊  | 210M/268M [00:01<00:00, 203MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  78%|███████▊  | 210M/268M [00:01<00:00, 203MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  90%|█████████ | 241M/268M [00:01<00:00, 206MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  90%|█████████ | 241M/268M [00:01<00:00, 206MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  90%|█████████ | 241M/268M [00:01<00:00, 206MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 207MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 207MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 207MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 185MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 185MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 185MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json:   0%|          | 0.00/48.0 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- tokenizer_config.json:   0%|          | 0.00/48.0 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json:   0%|          | 0.00/48.0 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 52.1kB/s]
- 
-- </pre> -
 -
-- tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 52.1kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 52.1kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 43.5MB/s]
- 
-- </pre> -
 -
-- vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 43.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 43.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json:   0%|          | 0.00/998 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- config.json:   0%|          | 0.00/998 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json:   0%|          | 0.00/998 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json: 100%|██████████| 998/998 [00:00<00:00, 1.14MB/s]
- 
-- </pre> -
 -
-- config.json: 100%|██████████| 998/998 [00:00<00:00, 1.14MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json: 100%|██████████| 998/998 [00:00<00:00, 1.14MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   0%|          | 0.00/1.33G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   0%|          | 0.00/1.33G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   0%|          | 0.00/1.33G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   1%|          | 10.5M/1.33G [00:00<01:11, 18.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   1%|          | 10.5M/1.33G [00:00<01:11, 18.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   1%|          | 10.5M/1.33G [00:00<01:11, 18.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   2%|▏         | 21.0M/1.33G [00:00<00:43, 30.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   2%|▏         | 21.0M/1.33G [00:00<00:43, 30.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   2%|▏         | 21.0M/1.33G [00:00<00:43, 30.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   2%|▏         | 31.5M/1.33G [00:01<00:37, 34.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   2%|▏         | 31.5M/1.33G [00:01<00:37, 34.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   2%|▏         | 31.5M/1.33G [00:01<00:37, 34.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   3%|▎         | 41.9M/1.33G [00:01<00:42, 30.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   3%|▎         | 41.9M/1.33G [00:01<00:42, 30.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   3%|▎         | 41.9M/1.33G [00:01<00:42, 30.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   4%|▍         | 52.4M/1.33G [00:01<00:33, 38.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   4%|▍         | 52.4M/1.33G [00:01<00:33, 38.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   4%|▍         | 52.4M/1.33G [00:01<00:33, 38.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   5%|▍         | 62.9M/1.33G [00:01<00:29, 43.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   5%|▍         | 62.9M/1.33G [00:01<00:29, 43.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   5%|▍         | 62.9M/1.33G [00:01<00:29, 43.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   6%|▌         | 73.4M/1.33G [00:01<00:27, 46.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   6%|▌         | 73.4M/1.33G [00:01<00:27, 46.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   6%|▌         | 73.4M/1.33G [00:01<00:27, 46.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   6%|▋         | 83.9M/1.33G [00:02<00:28, 44.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   6%|▋         | 83.9M/1.33G [00:02<00:28, 44.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   6%|▋         | 83.9M/1.33G [00:02<00:28, 44.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   7%|▋         | 94.4M/1.33G [00:02<00:27, 45.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   7%|▋         | 94.4M/1.33G [00:02<00:27, 45.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   7%|▋         | 94.4M/1.33G [00:02<00:27, 45.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   8%|▊         | 105M/1.33G [00:02<00:25, 47.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   8%|▊         | 105M/1.33G [00:02<00:25, 47.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   8%|▊         | 105M/1.33G [00:02<00:25, 47.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   9%|▊         | 115M/1.33G [00:02<00:31, 39.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   9%|▊         | 115M/1.33G [00:02<00:31, 39.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   9%|▊         | 115M/1.33G [00:02<00:31, 39.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:   9%|▉         | 126M/1.33G [00:03<00:29, 40.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:   9%|▉         | 126M/1.33G [00:03<00:29, 40.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:   9%|▉         | 126M/1.33G [00:03<00:29, 40.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  10%|█         | 136M/1.33G [00:03<00:26, 45.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  10%|█         | 136M/1.33G [00:03<00:26, 45.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  10%|█         | 136M/1.33G [00:03<00:26, 45.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  11%|█         | 147M/1.33G [00:03<00:27, 43.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  11%|█         | 147M/1.33G [00:03<00:27, 43.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  11%|█         | 147M/1.33G [00:03<00:27, 43.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  12%|█▏        | 157M/1.33G [00:03<00:26, 44.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  12%|█▏        | 157M/1.33G [00:03<00:26, 44.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  12%|█▏        | 157M/1.33G [00:03<00:26, 44.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  13%|█▎        | 168M/1.33G [00:04<00:26, 44.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  13%|█▎        | 168M/1.33G [00:04<00:26, 44.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  13%|█▎        | 168M/1.33G [00:04<00:26, 44.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  13%|█▎        | 178M/1.33G [00:04<00:23, 49.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  13%|█▎        | 178M/1.33G [00:04<00:23, 49.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  13%|█▎        | 178M/1.33G [00:04<00:23, 49.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  14%|█▍        | 189M/1.33G [00:04<00:22, 51.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  14%|█▍        | 189M/1.33G [00:04<00:22, 51.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  14%|█▍        | 189M/1.33G [00:04<00:22, 51.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  15%|█▍        | 199M/1.33G [00:04<00:23, 48.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  15%|█▍        | 199M/1.33G [00:04<00:23, 48.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  15%|█▍        | 199M/1.33G [00:04<00:23, 48.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  16%|█▌        | 210M/1.33G [00:04<00:22, 49.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  16%|█▌        | 210M/1.33G [00:04<00:22, 49.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  16%|█▌        | 210M/1.33G [00:04<00:22, 49.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  17%|█▋        | 220M/1.33G [00:05<00:21, 51.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  17%|█▋        | 220M/1.33G [00:05<00:21, 51.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  17%|█▋        | 220M/1.33G [00:05<00:21, 51.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  17%|█▋        | 231M/1.33G [00:05<00:24, 44.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  17%|█▋        | 231M/1.33G [00:05<00:24, 44.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  17%|█▋        | 231M/1.33G [00:05<00:24, 44.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  18%|█▊        | 241M/1.33G [00:05<00:26, 41.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  18%|█▊        | 241M/1.33G [00:05<00:26, 41.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  18%|█▊        | 241M/1.33G [00:05<00:26, 41.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  19%|█▉        | 252M/1.33G [00:05<00:27, 39.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  19%|█▉        | 252M/1.33G [00:05<00:27, 39.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  19%|█▉        | 252M/1.33G [00:05<00:27, 39.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  20%|█▉        | 262M/1.33G [00:06<00:24, 43.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  20%|█▉        | 262M/1.33G [00:06<00:24, 43.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  20%|█▉        | 262M/1.33G [00:06<00:24, 43.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  20%|██        | 273M/1.33G [00:06<00:22, 47.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  20%|██        | 273M/1.33G [00:06<00:22, 47.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  20%|██        | 273M/1.33G [00:06<00:22, 47.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  21%|██        | 283M/1.33G [00:06<00:21, 49.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  21%|██        | 283M/1.33G [00:06<00:21, 49.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  21%|██        | 283M/1.33G [00:06<00:21, 49.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  22%|██▏       | 294M/1.33G [00:06<00:24, 43.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  22%|██▏       | 294M/1.33G [00:06<00:24, 43.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  22%|██▏       | 294M/1.33G [00:06<00:24, 43.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  23%|██▎       | 304M/1.33G [00:07<00:25, 40.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  23%|██▎       | 304M/1.33G [00:07<00:25, 40.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  23%|██▎       | 304M/1.33G [00:07<00:25, 40.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  24%|██▎       | 315M/1.33G [00:07<00:24, 42.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  24%|██▎       | 315M/1.33G [00:07<00:24, 42.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  24%|██▎       | 315M/1.33G [00:07<00:24, 42.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  24%|██▍       | 325M/1.33G [00:07<00:23, 42.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  24%|██▍       | 325M/1.33G [00:07<00:23, 42.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  24%|██▍       | 325M/1.33G [00:07<00:23, 42.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  25%|██▌       | 336M/1.33G [00:07<00:23, 42.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  25%|██▌       | 336M/1.33G [00:07<00:23, 42.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  25%|██▌       | 336M/1.33G [00:07<00:23, 42.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  26%|██▌       | 346M/1.33G [00:08<00:23, 42.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  26%|██▌       | 346M/1.33G [00:08<00:23, 42.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  26%|██▌       | 346M/1.33G [00:08<00:23, 42.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  27%|██▋       | 357M/1.33G [00:08<00:23, 41.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  27%|██▋       | 357M/1.33G [00:08<00:23, 41.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  27%|██▋       | 357M/1.33G [00:08<00:23, 41.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  28%|██▊       | 367M/1.33G [00:08<00:21, 45.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  28%|██▊       | 367M/1.33G [00:08<00:21, 45.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  28%|██▊       | 367M/1.33G [00:08<00:21, 45.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  28%|██▊       | 377M/1.33G [00:08<00:26, 36.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  28%|██▊       | 377M/1.33G [00:08<00:26, 36.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  28%|██▊       | 377M/1.33G [00:08<00:26, 36.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  29%|██▉       | 388M/1.33G [00:09<00:22, 41.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  29%|██▉       | 388M/1.33G [00:09<00:22, 41.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  29%|██▉       | 388M/1.33G [00:09<00:22, 41.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  30%|██▉       | 398M/1.33G [00:09<00:21, 43.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  30%|██▉       | 398M/1.33G [00:09<00:21, 43.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  30%|██▉       | 398M/1.33G [00:09<00:21, 43.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  31%|███       | 409M/1.33G [00:09<00:22, 40.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  31%|███       | 409M/1.33G [00:09<00:22, 40.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  31%|███       | 409M/1.33G [00:09<00:22, 40.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  31%|███▏      | 419M/1.33G [00:09<00:24, 37.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  31%|███▏      | 419M/1.33G [00:09<00:24, 37.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  31%|███▏      | 419M/1.33G [00:09<00:24, 37.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  32%|███▏      | 430M/1.33G [00:10<00:21, 41.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  32%|███▏      | 430M/1.33G [00:10<00:21, 41.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  32%|███▏      | 430M/1.33G [00:10<00:21, 41.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  33%|███▎      | 440M/1.33G [00:10<00:21, 41.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  33%|███▎      | 440M/1.33G [00:10<00:21, 41.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  33%|███▎      | 440M/1.33G [00:10<00:21, 41.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  34%|███▍      | 451M/1.33G [00:10<00:18, 48.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  34%|███▍      | 451M/1.33G [00:10<00:18, 48.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  34%|███▍      | 451M/1.33G [00:10<00:18, 48.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  35%|███▍      | 461M/1.33G [00:10<00:20, 42.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  35%|███▍      | 461M/1.33G [00:10<00:20, 42.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  35%|███▍      | 461M/1.33G [00:10<00:20, 42.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  35%|███▌      | 472M/1.33G [00:11<00:19, 44.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  35%|███▌      | 472M/1.33G [00:11<00:19, 44.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  35%|███▌      | 472M/1.33G [00:11<00:19, 44.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  36%|███▌      | 482M/1.33G [00:11<00:27, 30.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  36%|███▌      | 482M/1.33G [00:11<00:27, 30.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  36%|███▌      | 482M/1.33G [00:11<00:27, 30.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  37%|███▋      | 493M/1.33G [00:11<00:23, 35.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  37%|███▋      | 493M/1.33G [00:11<00:23, 35.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  37%|███▋      | 493M/1.33G [00:11<00:23, 35.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  38%|███▊      | 503M/1.33G [00:12<00:25, 32.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  38%|███▊      | 503M/1.33G [00:12<00:25, 32.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  38%|███▊      | 503M/1.33G [00:12<00:25, 32.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  39%|███▊      | 514M/1.33G [00:12<00:28, 29.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  39%|███▊      | 514M/1.33G [00:12<00:28, 29.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  39%|███▊      | 514M/1.33G [00:12<00:28, 29.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  39%|███▉      | 524M/1.33G [00:12<00:24, 33.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  39%|███▉      | 524M/1.33G [00:12<00:24, 33.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  39%|███▉      | 524M/1.33G [00:12<00:24, 33.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  40%|████      | 535M/1.33G [00:13<00:20, 38.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  40%|████      | 535M/1.33G [00:13<00:20, 38.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  40%|████      | 535M/1.33G [00:13<00:20, 38.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  41%|████      | 545M/1.33G [00:13<00:19, 41.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  41%|████      | 545M/1.33G [00:13<00:19, 41.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  41%|████      | 545M/1.33G [00:13<00:19, 41.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  42%|████▏     | 556M/1.33G [00:13<00:17, 45.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  42%|████▏     | 556M/1.33G [00:13<00:17, 45.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  42%|████▏     | 556M/1.33G [00:13<00:17, 45.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  42%|████▏     | 566M/1.33G [00:13<00:15, 50.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  42%|████▏     | 566M/1.33G [00:13<00:15, 50.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  42%|████▏     | 566M/1.33G [00:13<00:15, 50.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  43%|████▎     | 577M/1.33G [00:13<00:14, 53.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  43%|████▎     | 577M/1.33G [00:13<00:14, 53.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  43%|████▎     | 577M/1.33G [00:13<00:14, 53.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  44%|████▍     | 587M/1.33G [00:14<00:16, 44.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  44%|████▍     | 587M/1.33G [00:14<00:16, 44.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  44%|████▍     | 587M/1.33G [00:14<00:16, 44.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  45%|████▍     | 598M/1.33G [00:14<00:18, 40.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  45%|████▍     | 598M/1.33G [00:14<00:18, 40.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  45%|████▍     | 598M/1.33G [00:14<00:18, 40.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  46%|████▌     | 608M/1.33G [00:14<00:17, 41.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  46%|████▌     | 608M/1.33G [00:14<00:17, 41.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  46%|████▌     | 608M/1.33G [00:14<00:17, 41.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  46%|████▋     | 619M/1.33G [00:14<00:16, 42.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  46%|████▋     | 619M/1.33G [00:14<00:16, 42.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  46%|████▋     | 619M/1.33G [00:14<00:16, 42.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  47%|████▋     | 629M/1.33G [00:15<00:16, 42.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  47%|████▋     | 629M/1.33G [00:15<00:16, 42.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  47%|████▋     | 629M/1.33G [00:15<00:16, 42.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  48%|████▊     | 640M/1.33G [00:15<00:16, 42.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  48%|████▊     | 640M/1.33G [00:15<00:16, 42.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  48%|████▊     | 640M/1.33G [00:15<00:16, 42.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  49%|████▊     | 650M/1.33G [00:15<00:14, 45.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  49%|████▊     | 650M/1.33G [00:15<00:14, 45.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  49%|████▊     | 650M/1.33G [00:15<00:14, 45.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  50%|████▉     | 661M/1.33G [00:15<00:13, 50.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  50%|████▉     | 661M/1.33G [00:15<00:13, 50.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  50%|████▉     | 661M/1.33G [00:15<00:13, 50.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  50%|█████     | 671M/1.33G [00:16<00:15, 42.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  50%|█████     | 671M/1.33G [00:16<00:15, 42.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  50%|█████     | 671M/1.33G [00:16<00:15, 42.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  51%|█████     | 682M/1.33G [00:16<00:13, 48.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  51%|█████     | 682M/1.33G [00:16<00:13, 48.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  51%|█████     | 682M/1.33G [00:16<00:13, 48.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  52%|█████▏    | 692M/1.33G [00:16<00:15, 41.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  52%|█████▏    | 692M/1.33G [00:16<00:15, 41.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  52%|█████▏    | 692M/1.33G [00:16<00:15, 41.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  53%|█████▎    | 703M/1.33G [00:16<00:15, 41.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  53%|█████▎    | 703M/1.33G [00:16<00:15, 41.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  53%|█████▎    | 703M/1.33G [00:16<00:15, 41.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  53%|█████▎    | 713M/1.33G [00:17<00:15, 40.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  53%|█████▎    | 713M/1.33G [00:17<00:15, 40.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  53%|█████▎    | 713M/1.33G [00:17<00:15, 40.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  54%|█████▍    | 724M/1.33G [00:17<00:13, 44.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  54%|█████▍    | 724M/1.33G [00:17<00:13, 44.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  54%|█████▍    | 724M/1.33G [00:17<00:13, 44.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  55%|█████▌    | 734M/1.33G [00:17<00:12, 47.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  55%|█████▌    | 734M/1.33G [00:17<00:12, 47.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  55%|█████▌    | 734M/1.33G [00:17<00:12, 47.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  56%|█████▌    | 744M/1.33G [00:17<00:13, 44.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  56%|█████▌    | 744M/1.33G [00:17<00:13, 44.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  56%|█████▌    | 744M/1.33G [00:17<00:13, 44.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  57%|█████▋    | 755M/1.33G [00:18<00:14, 39.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  57%|█████▋    | 755M/1.33G [00:18<00:14, 39.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  57%|█████▋    | 755M/1.33G [00:18<00:14, 39.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  57%|█████▋    | 765M/1.33G [00:18<00:13, 43.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  57%|█████▋    | 765M/1.33G [00:18<00:13, 43.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  57%|█████▋    | 765M/1.33G [00:18<00:13, 43.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  58%|█████▊    | 776M/1.33G [00:18<00:12, 43.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  58%|█████▊    | 776M/1.33G [00:18<00:12, 43.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  58%|█████▊    | 776M/1.33G [00:18<00:12, 43.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  59%|█████▉    | 786M/1.33G [00:18<00:11, 49.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  59%|█████▉    | 786M/1.33G [00:18<00:11, 49.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  59%|█████▉    | 786M/1.33G [00:18<00:11, 49.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  60%|█████▉    | 797M/1.33G [00:18<00:10, 51.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  60%|█████▉    | 797M/1.33G [00:18<00:10, 51.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  60%|█████▉    | 797M/1.33G [00:18<00:10, 51.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  61%|██████    | 807M/1.33G [00:18<00:09, 55.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  61%|██████    | 807M/1.33G [00:18<00:09, 55.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  61%|██████    | 807M/1.33G [00:18<00:09, 55.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  61%|██████▏   | 818M/1.33G [00:19<00:09, 55.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  61%|██████▏   | 818M/1.33G [00:19<00:09, 55.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  61%|██████▏   | 818M/1.33G [00:19<00:09, 55.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  62%|██████▏   | 828M/1.33G [00:19<00:10, 46.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  62%|██████▏   | 828M/1.33G [00:19<00:10, 46.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  62%|██████▏   | 828M/1.33G [00:19<00:10, 46.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  63%|██████▎   | 839M/1.33G [00:19<00:12, 41.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  63%|██████▎   | 839M/1.33G [00:19<00:12, 41.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  63%|██████▎   | 839M/1.33G [00:19<00:12, 41.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  64%|██████▎   | 849M/1.33G [00:20<00:12, 38.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  64%|██████▎   | 849M/1.33G [00:20<00:12, 38.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  64%|██████▎   | 849M/1.33G [00:20<00:12, 38.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  64%|██████▍   | 860M/1.33G [00:20<00:11, 41.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  64%|██████▍   | 860M/1.33G [00:20<00:11, 41.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  64%|██████▍   | 860M/1.33G [00:20<00:11, 41.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  65%|██████▌   | 870M/1.33G [00:20<00:10, 42.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  65%|██████▌   | 870M/1.33G [00:20<00:10, 42.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  65%|██████▌   | 870M/1.33G [00:20<00:10, 42.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  66%|██████▌   | 881M/1.33G [00:20<00:09, 46.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  66%|██████▌   | 881M/1.33G [00:20<00:09, 46.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  66%|██████▌   | 881M/1.33G [00:20<00:09, 46.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  67%|██████▋   | 891M/1.33G [00:20<00:08, 51.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  67%|██████▋   | 891M/1.33G [00:20<00:08, 51.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  67%|██████▋   | 891M/1.33G [00:20<00:08, 51.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  68%|██████▊   | 902M/1.33G [00:21<00:08, 53.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  68%|██████▊   | 902M/1.33G [00:21<00:08, 53.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  68%|██████▊   | 902M/1.33G [00:21<00:08, 53.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  68%|██████▊   | 912M/1.33G [00:21<00:07, 53.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  68%|██████▊   | 912M/1.33G [00:21<00:07, 53.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  68%|██████▊   | 912M/1.33G [00:21<00:07, 53.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  69%|██████▉   | 923M/1.33G [00:21<00:08, 48.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  69%|██████▉   | 923M/1.33G [00:21<00:08, 48.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  69%|██████▉   | 923M/1.33G [00:21<00:08, 48.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  70%|██████▉   | 933M/1.33G [00:21<00:10, 39.2MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  70%|██████▉   | 933M/1.33G [00:21<00:10, 39.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  70%|██████▉   | 933M/1.33G [00:21<00:10, 39.2MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  71%|███████   | 944M/1.33G [00:22<00:09, 42.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  71%|███████   | 944M/1.33G [00:22<00:09, 42.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  71%|███████   | 944M/1.33G [00:22<00:09, 42.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  72%|███████▏  | 954M/1.33G [00:22<00:08, 45.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  72%|███████▏  | 954M/1.33G [00:22<00:08, 45.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  72%|███████▏  | 954M/1.33G [00:22<00:08, 45.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  72%|███████▏  | 965M/1.33G [00:22<00:09, 37.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  72%|███████▏  | 965M/1.33G [00:22<00:09, 37.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  72%|███████▏  | 965M/1.33G [00:22<00:09, 37.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  73%|███████▎  | 975M/1.33G [00:22<00:08, 40.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  73%|███████▎  | 975M/1.33G [00:22<00:08, 40.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  73%|███████▎  | 975M/1.33G [00:22<00:08, 40.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  74%|███████▍  | 986M/1.33G [00:23<00:07, 43.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  74%|███████▍  | 986M/1.33G [00:23<00:07, 43.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  74%|███████▍  | 986M/1.33G [00:23<00:07, 43.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  75%|███████▍  | 996M/1.33G [00:23<00:07, 46.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  75%|███████▍  | 996M/1.33G [00:23<00:07, 46.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  75%|███████▍  | 996M/1.33G [00:23<00:07, 46.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  75%|███████▌  | 1.01G/1.33G [00:23<00:08, 39.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  75%|███████▌  | 1.01G/1.33G [00:23<00:08, 39.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  75%|███████▌  | 1.01G/1.33G [00:23<00:08, 39.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  76%|███████▌  | 1.02G/1.33G [00:23<00:07, 45.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  76%|███████▌  | 1.02G/1.33G [00:23<00:07, 45.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  76%|███████▌  | 1.02G/1.33G [00:23<00:07, 45.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  77%|███████▋  | 1.03G/1.33G [00:24<00:07, 41.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  77%|███████▋  | 1.03G/1.33G [00:24<00:07, 41.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  77%|███████▋  | 1.03G/1.33G [00:24<00:07, 41.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  78%|███████▊  | 1.04G/1.33G [00:24<00:07, 41.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  78%|███████▊  | 1.04G/1.33G [00:24<00:07, 41.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  78%|███████▊  | 1.04G/1.33G [00:24<00:07, 41.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  79%|███████▊  | 1.05G/1.33G [00:24<00:07, 36.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  79%|███████▊  | 1.05G/1.33G [00:24<00:07, 36.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  79%|███████▊  | 1.05G/1.33G [00:24<00:07, 36.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  79%|███████▉  | 1.06G/1.33G [00:24<00:06, 42.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  79%|███████▉  | 1.06G/1.33G [00:24<00:06, 42.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  79%|███████▉  | 1.06G/1.33G [00:24<00:06, 42.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  80%|████████  | 1.07G/1.33G [00:25<00:05, 46.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  80%|████████  | 1.07G/1.33G [00:25<00:05, 46.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  80%|████████  | 1.07G/1.33G [00:25<00:05, 46.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  81%|████████  | 1.08G/1.33G [00:25<00:05, 47.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  81%|████████  | 1.08G/1.33G [00:25<00:05, 47.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  81%|████████  | 1.08G/1.33G [00:25<00:05, 47.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  82%|████████▏ | 1.09G/1.33G [00:25<00:06, 36.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  82%|████████▏ | 1.09G/1.33G [00:25<00:06, 36.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  82%|████████▏ | 1.09G/1.33G [00:25<00:06, 36.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  83%|████████▎ | 1.10G/1.33G [00:25<00:05, 39.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  83%|████████▎ | 1.10G/1.33G [00:25<00:05, 39.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  83%|████████▎ | 1.10G/1.33G [00:25<00:05, 39.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  83%|████████▎ | 1.11G/1.33G [00:26<00:05, 41.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  83%|████████▎ | 1.11G/1.33G [00:26<00:05, 41.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  83%|████████▎ | 1.11G/1.33G [00:26<00:05, 41.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  84%|████████▍ | 1.12G/1.33G [00:26<00:04, 48.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  84%|████████▍ | 1.12G/1.33G [00:26<00:04, 48.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  84%|████████▍ | 1.12G/1.33G [00:26<00:04, 48.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  85%|████████▍ | 1.13G/1.33G [00:26<00:05, 39.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  85%|████████▍ | 1.13G/1.33G [00:26<00:05, 39.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  85%|████████▍ | 1.13G/1.33G [00:26<00:05, 39.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  86%|████████▌ | 1.14G/1.33G [00:26<00:04, 38.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  86%|████████▌ | 1.14G/1.33G [00:26<00:04, 38.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  86%|████████▌ | 1.14G/1.33G [00:26<00:04, 38.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  86%|████████▋ | 1.15G/1.33G [00:27<00:04, 40.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  86%|████████▋ | 1.15G/1.33G [00:27<00:04, 40.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  86%|████████▋ | 1.15G/1.33G [00:27<00:04, 40.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  87%|████████▋ | 1.16G/1.33G [00:27<00:04, 39.5MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  87%|████████▋ | 1.16G/1.33G [00:27<00:04, 39.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  87%|████████▋ | 1.16G/1.33G [00:27<00:04, 39.5MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  88%|████████▊ | 1.17G/1.33G [00:27<00:03, 42.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  88%|████████▊ | 1.17G/1.33G [00:27<00:03, 42.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  88%|████████▊ | 1.17G/1.33G [00:27<00:03, 42.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  89%|████████▉ | 1.18G/1.33G [00:27<00:03, 46.8MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  89%|████████▉ | 1.18G/1.33G [00:27<00:03, 46.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  89%|████████▉ | 1.18G/1.33G [00:27<00:03, 46.8MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  90%|████████▉ | 1.20G/1.33G [00:28<00:03, 46.1MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  90%|████████▉ | 1.20G/1.33G [00:28<00:03, 46.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  90%|████████▉ | 1.20G/1.33G [00:28<00:03, 46.1MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  90%|█████████ | 1.21G/1.33G [00:28<00:02, 46.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  90%|█████████ | 1.21G/1.33G [00:28<00:02, 46.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  90%|█████████ | 1.21G/1.33G [00:28<00:02, 46.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  91%|█████████ | 1.22G/1.33G [00:28<00:03, 39.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  91%|█████████ | 1.22G/1.33G [00:28<00:03, 39.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  91%|█████████ | 1.22G/1.33G [00:28<00:03, 39.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  92%|█████████▏| 1.23G/1.33G [00:28<00:02, 37.7MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  92%|█████████▏| 1.23G/1.33G [00:28<00:02, 37.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  92%|█████████▏| 1.23G/1.33G [00:28<00:02, 37.7MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  93%|█████████▎| 1.24G/1.33G [00:29<00:02, 37.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  93%|█████████▎| 1.24G/1.33G [00:29<00:02, 37.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  93%|█████████▎| 1.24G/1.33G [00:29<00:02, 37.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  94%|█████████▎| 1.25G/1.33G [00:29<00:02, 41.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  94%|█████████▎| 1.25G/1.33G [00:29<00:02, 41.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  94%|█████████▎| 1.25G/1.33G [00:29<00:02, 41.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  94%|█████████▍| 1.26G/1.33G [00:29<00:02, 34.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  94%|█████████▍| 1.26G/1.33G [00:29<00:02, 34.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  94%|█████████▍| 1.26G/1.33G [00:29<00:02, 34.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  95%|█████████▌| 1.27G/1.33G [00:30<00:01, 41.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  95%|█████████▌| 1.27G/1.33G [00:30<00:01, 41.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  95%|█████████▌| 1.27G/1.33G [00:30<00:01, 41.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  96%|█████████▌| 1.28G/1.33G [00:30<00:01, 38.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  96%|█████████▌| 1.28G/1.33G [00:30<00:01, 38.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  96%|█████████▌| 1.28G/1.33G [00:30<00:01, 38.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  97%|█████████▋| 1.29G/1.33G [00:30<00:01, 38.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  97%|█████████▋| 1.29G/1.33G [00:30<00:01, 38.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  97%|█████████▋| 1.29G/1.33G [00:30<00:01, 38.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  97%|█████████▋| 1.30G/1.33G [00:30<00:00, 40.0MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  97%|█████████▋| 1.30G/1.33G [00:30<00:00, 40.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  97%|█████████▋| 1.30G/1.33G [00:30<00:00, 40.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  98%|█████████▊| 1.31G/1.33G [00:30<00:00, 45.3MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  98%|█████████▊| 1.31G/1.33G [00:30<00:00, 45.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  98%|█████████▊| 1.31G/1.33G [00:30<00:00, 45.3MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin:  99%|█████████▉| 1.32G/1.33G [00:31<00:00, 40.9MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin:  99%|█████████▉| 1.32G/1.33G [00:31<00:00, 40.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin:  99%|█████████▉| 1.32G/1.33G [00:31<00:00, 40.9MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin: 100%|█████████▉| 1.33G/1.33G [00:31<00:00, 47.6MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin: 100%|█████████▉| 1.33G/1.33G [00:31<00:00, 47.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin: 100%|█████████▉| 1.33G/1.33G [00:31<00:00, 47.6MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- pytorch_model.bin: 100%|██████████| 1.33G/1.33G [00:31<00:00, 42.4MB/s]
- 
-- </pre> -
 -
-- pytorch_model.bin: 100%|██████████| 1.33G/1.33G [00:31<00:00, 42.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-pytorch_model.bin: 100%|██████████| 1.33G/1.33G [00:31<00:00, 42.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json:   0%|          | 0.00/60.0 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- tokenizer_config.json:   0%|          | 0.00/60.0 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json:   0%|          | 0.00/60.0 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json: 100%|██████████| 60.0/60.0 [00:00<00:00, 66.8kB/s]
- 
-- </pre> -
 -
-- tokenizer_config.json: 100%|██████████| 60.0/60.0 [00:00<00:00, 66.8kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json: 100%|██████████| 60.0/60.0 [00:00<00:00, 66.8kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.txt:   0%|          | 0.00/213k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- vocab.txt:   0%|          | 0.00/213k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt:   0%|          | 0.00/213k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 44.4MB/s]
- 
-- </pre> -
 -
-- vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 44.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 44.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 1/6 [01:05<05:26, 65.29s/it]
- 
-- </pre> -
 -
-- 17%|█▋        | 1/6 [01:05<05:26, 65.29s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 1/6 [01:05<05:26, 65.29s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 2/6 [01:14<02:09, 32.49s/it]
- 
-- </pre> -
 -
-- 33%|███▎      | 2/6 [01:14<02:09, 32.49s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 2/6 [01:14<02:09, 32.49s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 3/6 [01:24<01:06, 22.03s/it]
- 
-- </pre> -
 -
-- 50%|█████     | 3/6 [01:24<01:06, 22.03s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 3/6 [01:24<01:06, 22.03s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 4/6 [01:35<00:35, 17.55s/it]
- 
-- </pre> -
 -
-- 67%|██████▋   | 4/6 [01:35<00:35, 17.55s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 4/6 [01:35<00:35, 17.55s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 5/6 [01:44<00:14, 14.69s/it]
- 
-- </pre> -
 -
-- 83%|████████▎ | 5/6 [01:44<00:14, 14.69s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 5/6 [01:44<00:14, 14.69s/it]
-
-
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:53<00:00, 12.85s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:53<00:00, 12.85s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:53<00:00, 12.85s/it]
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:53<00:00, 19.00s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:53<00:00, 19.00s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:53<00:00, 19.00s/it]
-
-
-
-
-
-
-
-
 For the computationally demanding SummaryDetector, it is best to initialize the model first and then analyze each image while passing the model explicitly. This can be done in a separate loop or in the same loop as for text and emotion detection.
-
-[11]:
+
+[ ]:
 
 
 # clear memory on cuda first? Faces seems to always not release GPU
@@ -8792,4214 +335,9 @@ order to load all the package's dependencies. You can do this by selecting t
 
 
 
-
-
-
-
-
-
-
-- vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.82MB/s]
- 
-- </pre> -
 -
-- vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.82MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.82MB/s]
-
-
-
-
-
-
-
-- vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.80MB/s]
- 
-- </pre> -
 -
-- vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.80MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.80MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- tokenizer_config.json:   0%|          | 0.00/28.0 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- tokenizer_config.json:   0%|          | 0.00/28.0 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json:   0%|          | 0.00/28.0 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- tokenizer_config.json: 100%|██████████| 28.0/28.0 [00:00<00:00, 39.1kB/s]
- 
-- </pre> -
 -
-- tokenizer_config.json: 100%|██████████| 28.0/28.0 [00:00<00:00, 39.1kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-tokenizer_config.json: 100%|██████████| 28.0/28.0 [00:00<00:00, 39.1kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- config.json:   0%|          | 0.00/570 [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- config.json:   0%|          | 0.00/570 [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json:   0%|          | 0.00/570 [00:00<?, ?B/s]
-
-
-
-
-
-
-
-- config.json: 100%|██████████| 570/570 [00:00<00:00, 909kB/s]
- 
-- </pre> -
 -
-- config.json: 100%|██████████| 570/570 [00:00<00:00, 909kB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-config.json: 100%|██████████| 570/570 [00:00<00:00, 909kB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0.00/2.50G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- 0%|          | 0.00/2.50G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0.00/2.50G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 4.01M/2.50G [00:00<01:35, 28.1MB/s]
- 
-- </pre> -
 -
-- 0%|          | 4.01M/2.50G [00:00<01:35, 28.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 4.01M/2.50G [00:00<01:35, 28.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 11.6M/2.50G [00:00<00:52, 51.0MB/s]
- 
-- </pre> -
 -
-- 0%|          | 11.6M/2.50G [00:00<00:52, 51.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 11.6M/2.50G [00:00<00:52, 51.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 16.8M/2.50G [00:00<00:56, 47.5MB/s]
- 
-- </pre> -
 -
-- 1%|          | 16.8M/2.50G [00:00<00:56, 47.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 16.8M/2.50G [00:00<00:56, 47.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 24.0M/2.50G [00:00<00:56, 46.9MB/s]
- 
-- </pre> -
 -
-- 1%|          | 24.0M/2.50G [00:00<00:56, 46.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 24.0M/2.50G [00:00<00:56, 46.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 32.0M/2.50G [00:00<00:53, 49.5MB/s]
- 
-- </pre> -
 -
-- 1%|          | 32.0M/2.50G [00:00<00:53, 49.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 32.0M/2.50G [00:00<00:53, 49.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 40.0M/2.50G [00:00<00:51, 51.3MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 40.0M/2.50G [00:00<00:51, 51.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 40.0M/2.50G [00:00<00:51, 51.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 48.0M/2.50G [00:01<00:50, 52.0MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 48.0M/2.50G [00:01<00:50, 52.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 48.0M/2.50G [00:01<00:50, 52.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 56.0M/2.50G [00:01<00:48, 53.7MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 56.0M/2.50G [00:01<00:48, 53.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 56.0M/2.50G [00:01<00:48, 53.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 64.0M/2.50G [00:01<00:47, 55.2MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 64.0M/2.50G [00:01<00:47, 55.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 64.0M/2.50G [00:01<00:47, 55.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 72.0M/2.50G [00:01<00:58, 44.8MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 72.0M/2.50G [00:01<00:58, 44.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 72.0M/2.50G [00:01<00:58, 44.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 80.0M/2.50G [00:01<00:55, 47.3MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 80.0M/2.50G [00:01<00:55, 47.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 80.0M/2.50G [00:01<00:55, 47.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 88.0M/2.50G [00:01<00:52, 49.8MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 88.0M/2.50G [00:01<00:52, 49.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 88.0M/2.50G [00:01<00:52, 49.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▎         | 96.0M/2.50G [00:02<00:49, 51.8MB/s]
- 
-- </pre> -
 -
-- 4%|▎         | 96.0M/2.50G [00:02<00:49, 51.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▎         | 96.0M/2.50G [00:02<00:49, 51.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 104M/2.50G [00:02<00:44, 57.5MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 104M/2.50G [00:02<00:44, 57.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 104M/2.50G [00:02<00:44, 57.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 112M/2.50G [00:02<01:12, 35.7MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 112M/2.50G [00:02<01:12, 35.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 112M/2.50G [00:02<01:12, 35.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 5%|▍         | 128M/2.50G [00:02<00:56, 45.6MB/s]
- 
-- </pre> -
 -
-- 5%|▍         | 128M/2.50G [00:02<00:56, 45.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-5%|▍         | 128M/2.50G [00:02<00:56, 45.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▌         | 144M/2.50G [00:02<00:42, 59.1MB/s]
- 
-- </pre> -
 -
-- 6%|▌         | 144M/2.50G [00:02<00:42, 59.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▌         | 144M/2.50G [00:02<00:42, 59.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▌         | 160M/2.50G [00:03<00:36, 69.0MB/s]
- 
-- </pre> -
 -
-- 6%|▌         | 160M/2.50G [00:03<00:36, 69.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▌         | 160M/2.50G [00:03<00:36, 69.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 7%|▋         | 176M/2.50G [00:03<00:29, 84.7MB/s]
- 
-- </pre> -
 -
-- 7%|▋         | 176M/2.50G [00:03<00:29, 84.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-7%|▋         | 176M/2.50G [00:03<00:29, 84.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 7%|▋         | 192M/2.50G [00:03<00:24, 100MB/s]
- 
-- </pre> -
 -
-- 7%|▋         | 192M/2.50G [00:03<00:24, 100MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-7%|▋         | 192M/2.50G [00:03<00:24, 100MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 203M/2.50G [00:03<00:33, 74.4MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 203M/2.50G [00:03<00:33, 74.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 203M/2.50G [00:03<00:33, 74.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 216M/2.50G [00:03<00:34, 72.1MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 216M/2.50G [00:03<00:34, 72.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 216M/2.50G [00:03<00:34, 72.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 9%|▉         | 232M/2.50G [00:04<00:31, 78.8MB/s]
- 
-- </pre> -
 -
-- 9%|▉         | 232M/2.50G [00:04<00:31, 78.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-9%|▉         | 232M/2.50G [00:04<00:31, 78.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 10%|▉         | 248M/2.50G [00:04<00:28, 84.3MB/s]
- 
-- </pre> -
 -
-- 10%|▉         | 248M/2.50G [00:04<00:28, 84.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-10%|▉         | 248M/2.50G [00:04<00:28, 84.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 11%|█         | 272M/2.50G [00:04<00:22, 106MB/s]
- 
-- </pre> -
 -
-- 11%|█         | 272M/2.50G [00:04<00:22, 106MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-11%|█         | 272M/2.50G [00:04<00:22, 106MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 11%|█         | 288M/2.50G [00:04<00:20, 114MB/s]
- 
-- </pre> -
 -
-- 11%|█         | 288M/2.50G [00:04<00:20, 114MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-11%|█         | 288M/2.50G [00:04<00:20, 114MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 12%|█▏        | 304M/2.50G [00:04<00:22, 106MB/s]
- 
-- </pre> -
 -
-- 12%|█▏        | 304M/2.50G [00:04<00:22, 106MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-12%|█▏        | 304M/2.50G [00:04<00:22, 106MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 13%|█▎        | 328M/2.50G [00:04<00:18, 125MB/s]
- 
-- </pre> -
 -
-- 13%|█▎        | 328M/2.50G [00:04<00:18, 125MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-13%|█▎        | 328M/2.50G [00:04<00:18, 125MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 13%|█▎        | 344M/2.50G [00:04<00:19, 122MB/s]
- 
-- </pre> -
 -
-- 13%|█▎        | 344M/2.50G [00:04<00:19, 122MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-13%|█▎        | 344M/2.50G [00:04<00:19, 122MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 14%|█▍        | 365M/2.50G [00:05<00:16, 144MB/s]
- 
-- </pre> -
 -
-- 14%|█▍        | 365M/2.50G [00:05<00:16, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-14%|█▍        | 365M/2.50G [00:05<00:16, 144MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 15%|█▍        | 384M/2.50G [00:05<00:16, 139MB/s]
- 
-- </pre> -
 -
-- 15%|█▍        | 384M/2.50G [00:05<00:16, 139MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-15%|█▍        | 384M/2.50G [00:05<00:16, 139MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 16%|█▌        | 408M/2.50G [00:05<00:14, 157MB/s]
- 
-- </pre> -
 -
-- 16%|█▌        | 408M/2.50G [00:05<00:14, 157MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-16%|█▌        | 408M/2.50G [00:05<00:14, 157MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 424M/2.50G [00:05<00:17, 128MB/s]
- 
-- </pre> -
 -
-- 17%|█▋        | 424M/2.50G [00:05<00:17, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 424M/2.50G [00:05<00:17, 128MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 437M/2.50G [00:05<00:19, 112MB/s]
- 
-- </pre> -
 -
-- 17%|█▋        | 437M/2.50G [00:05<00:19, 112MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 437M/2.50G [00:05<00:19, 112MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 18%|█▊        | 457M/2.50G [00:05<00:16, 130MB/s]
- 
-- </pre> -
 -
-- 18%|█▊        | 457M/2.50G [00:05<00:16, 130MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-18%|█▊        | 457M/2.50G [00:05<00:16, 130MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 19%|█▊        | 475M/2.50G [00:05<00:15, 145MB/s]
- 
-- </pre> -
 -
-- 19%|█▊        | 475M/2.50G [00:05<00:15, 145MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-19%|█▊        | 475M/2.50G [00:05<00:15, 145MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 19%|█▉        | 491M/2.50G [00:06<00:15, 142MB/s]
- 
-- </pre> -
 -
-- 19%|█▉        | 491M/2.50G [00:06<00:15, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-19%|█▉        | 491M/2.50G [00:06<00:15, 142MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 20%|█▉        | 505M/2.50G [00:06<00:15, 141MB/s]
- 
-- </pre> -
 -
-- 20%|█▉        | 505M/2.50G [00:06<00:15, 141MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-20%|█▉        | 505M/2.50G [00:06<00:15, 141MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 20%|██        | 519M/2.50G [00:06<00:15, 140MB/s]
- 
-- </pre> -
 -
-- 20%|██        | 519M/2.50G [00:06<00:15, 140MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-20%|██        | 519M/2.50G [00:06<00:15, 140MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 21%|██        | 544M/2.50G [00:06<00:13, 153MB/s]
- 
-- </pre> -
 -
-- 21%|██        | 544M/2.50G [00:06<00:13, 153MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-21%|██        | 544M/2.50G [00:06<00:13, 153MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 22%|██▏       | 570M/2.50G [00:06<00:11, 185MB/s]
- 
-- </pre> -
 -
-- 22%|██▏       | 570M/2.50G [00:06<00:11, 185MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-22%|██▏       | 570M/2.50G [00:06<00:11, 185MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 23%|██▎       | 589M/2.50G [00:06<00:12, 165MB/s]
- 
-- </pre> -
 -
-- 23%|██▎       | 589M/2.50G [00:06<00:12, 165MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-23%|██▎       | 589M/2.50G [00:06<00:12, 165MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 24%|██▎       | 606M/2.50G [00:06<00:12, 170MB/s]
- 
-- </pre> -
 -
-- 24%|██▎       | 606M/2.50G [00:06<00:12, 170MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-24%|██▎       | 606M/2.50G [00:06<00:12, 170MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 24%|██▍       | 623M/2.50G [00:06<00:14, 139MB/s]
- 
-- </pre> -
 -
-- 24%|██▍       | 623M/2.50G [00:06<00:14, 139MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-24%|██▍       | 623M/2.50G [00:06<00:14, 139MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 25%|██▌       | 647M/2.50G [00:07<00:12, 163MB/s]
- 
-- </pre> -
 -
-- 25%|██▌       | 647M/2.50G [00:07<00:12, 163MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-25%|██▌       | 647M/2.50G [00:07<00:12, 163MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 26%|██▌       | 664M/2.50G [00:07<00:19, 101MB/s]
- 
-- </pre> -
 -
-- 26%|██▌       | 664M/2.50G [00:07<00:19, 101MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-26%|██▌       | 664M/2.50G [00:07<00:19, 101MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 27%|██▋       | 687M/2.50G [00:07<00:15, 127MB/s]
- 
-- </pre> -
 -
-- 27%|██▋       | 687M/2.50G [00:07<00:15, 127MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-27%|██▋       | 687M/2.50G [00:07<00:15, 127MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 27%|██▋       | 704M/2.50G [00:07<00:19, 102MB/s]
- 
-- </pre> -
 -
-- 27%|██▋       | 704M/2.50G [00:07<00:19, 102MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-27%|██▋       | 704M/2.50G [00:07<00:19, 102MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 28%|██▊       | 728M/2.50G [00:07<00:15, 121MB/s]
- 
-- </pre> -
 -
-- 28%|██▊       | 728M/2.50G [00:07<00:15, 121MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-28%|██▊       | 728M/2.50G [00:07<00:15, 121MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 29%|██▉       | 746M/2.50G [00:07<00:14, 134MB/s]
- 
-- </pre> -
 -
-- 29%|██▉       | 746M/2.50G [00:07<00:14, 134MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-29%|██▉       | 746M/2.50G [00:07<00:14, 134MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 30%|██▉       | 762M/2.50G [00:08<00:14, 129MB/s]
- 
-- </pre> -
 -
-- 30%|██▉       | 762M/2.50G [00:08<00:14, 129MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-30%|██▉       | 762M/2.50G [00:08<00:14, 129MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 31%|███       | 784M/2.50G [00:08<00:12, 152MB/s]
- 
-- </pre> -
 -
-- 31%|███       | 784M/2.50G [00:08<00:12, 152MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-31%|███       | 784M/2.50G [00:08<00:12, 152MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 31%|███       | 801M/2.50G [00:08<00:13, 139MB/s]
- 
-- </pre> -
 -
-- 31%|███       | 801M/2.50G [00:08<00:13, 139MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-31%|███       | 801M/2.50G [00:08<00:13, 139MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 32%|███▏      | 826M/2.50G [00:08<00:10, 167MB/s]
- 
-- </pre> -
 -
-- 32%|███▏      | 826M/2.50G [00:08<00:10, 167MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-32%|███▏      | 826M/2.50G [00:08<00:10, 167MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 843M/2.50G [00:08<00:14, 122MB/s]
- 
-- </pre> -
 -
-- 33%|███▎      | 843M/2.50G [00:08<00:14, 122MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 843M/2.50G [00:08<00:14, 122MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 34%|███▎      | 864M/2.50G [00:08<00:15, 118MB/s]
- 
-- </pre> -
 -
-- 34%|███▎      | 864M/2.50G [00:08<00:15, 118MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-34%|███▎      | 864M/2.50G [00:08<00:15, 118MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 35%|███▍      | 889M/2.50G [00:09<00:11, 147MB/s]
- 
-- </pre> -
 -
-- 35%|███▍      | 889M/2.50G [00:09<00:11, 147MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-35%|███▍      | 889M/2.50G [00:09<00:11, 147MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 35%|███▌      | 906M/2.50G [00:09<00:12, 136MB/s]
- 
-- </pre> -
 -
-- 35%|███▌      | 906M/2.50G [00:09<00:12, 136MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-35%|███▌      | 906M/2.50G [00:09<00:12, 136MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 36%|███▌      | 921M/2.50G [00:09<00:12, 134MB/s]
- 
-- </pre> -
 -
-- 36%|███▌      | 921M/2.50G [00:09<00:12, 134MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-36%|███▌      | 921M/2.50G [00:09<00:12, 134MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 37%|███▋      | 944M/2.50G [00:09<00:10, 157MB/s]
- 
-- </pre> -
 -
-- 37%|███▋      | 944M/2.50G [00:09<00:10, 157MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-37%|███▋      | 944M/2.50G [00:09<00:10, 157MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 37%|███▋      | 961M/2.50G [00:09<00:10, 159MB/s]
- 
-- </pre> -
 -
-- 37%|███▋      | 961M/2.50G [00:09<00:10, 159MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-37%|███▋      | 961M/2.50G [00:09<00:10, 159MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 38%|███▊      | 977M/2.50G [00:09<00:12, 136MB/s]
- 
-- </pre> -
 -
-- 38%|███▊      | 977M/2.50G [00:09<00:12, 136MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-38%|███▊      | 977M/2.50G [00:09<00:12, 136MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 39%|███▉      | 0.98G/2.50G [00:09<00:09, 166MB/s]
- 
-- </pre> -
 -
-- 39%|███▉      | 0.98G/2.50G [00:09<00:09, 166MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-39%|███▉      | 0.98G/2.50G [00:09<00:09, 166MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 40%|███▉      | 1.00G/2.50G [00:09<00:10, 154MB/s]
- 
-- </pre> -
 -
-- 40%|███▉      | 1.00G/2.50G [00:09<00:10, 154MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-40%|███▉      | 1.00G/2.50G [00:09<00:10, 154MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 41%|████      | 1.02G/2.50G [00:10<00:09, 171MB/s]
- 
-- </pre> -
 -
-- 41%|████      | 1.02G/2.50G [00:10<00:09, 171MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-41%|████      | 1.02G/2.50G [00:10<00:09, 171MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 41%|████▏     | 1.03G/2.50G [00:10<00:11, 142MB/s]
- 
-- </pre> -
 -
-- 41%|████▏     | 1.03G/2.50G [00:10<00:11, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-41%|████▏     | 1.03G/2.50G [00:10<00:11, 142MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 42%|████▏     | 1.05G/2.50G [00:10<00:12, 124MB/s]
- 
-- </pre> -
 -
-- 42%|████▏     | 1.05G/2.50G [00:10<00:12, 124MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-42%|████▏     | 1.05G/2.50G [00:10<00:12, 124MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 43%|████▎     | 1.07G/2.50G [00:10<00:12, 122MB/s]
- 
-- </pre> -
 -
-- 43%|████▎     | 1.07G/2.50G [00:10<00:12, 122MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-43%|████▎     | 1.07G/2.50G [00:10<00:12, 122MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▎     | 1.09G/2.50G [00:10<00:11, 127MB/s]
- 
-- </pre> -
 -
-- 44%|████▎     | 1.09G/2.50G [00:10<00:11, 127MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▎     | 1.09G/2.50G [00:10<00:11, 127MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▍     | 1.11G/2.50G [00:10<00:11, 126MB/s]
- 
-- </pre> -
 -
-- 44%|████▍     | 1.11G/2.50G [00:10<00:11, 126MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▍     | 1.11G/2.50G [00:10<00:11, 126MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 45%|████▌     | 1.13G/2.50G [00:10<00:09, 157MB/s]
- 
-- </pre> -
 -
-- 45%|████▌     | 1.13G/2.50G [00:10<00:09, 157MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-45%|████▌     | 1.13G/2.50G [00:10<00:09, 157MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▌     | 1.15G/2.50G [00:11<00:10, 146MB/s]
- 
-- </pre> -
 -
-- 46%|████▌     | 1.15G/2.50G [00:11<00:10, 146MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▌     | 1.15G/2.50G [00:11<00:10, 146MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▋     | 1.16G/2.50G [00:11<00:10, 134MB/s]
- 
-- </pre> -
 -
-- 46%|████▋     | 1.16G/2.50G [00:11<00:10, 134MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▋     | 1.16G/2.50G [00:11<00:10, 134MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 47%|████▋     | 1.18G/2.50G [00:11<00:10, 140MB/s]
- 
-- </pre> -
 -
-- 47%|████▋     | 1.18G/2.50G [00:11<00:10, 140MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-47%|████▋     | 1.18G/2.50G [00:11<00:10, 140MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 48%|████▊     | 1.20G/2.50G [00:11<00:09, 151MB/s]
- 
-- </pre> -
 -
-- 48%|████▊     | 1.20G/2.50G [00:11<00:09, 151MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-48%|████▊     | 1.20G/2.50G [00:11<00:09, 151MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 49%|████▊     | 1.22G/2.50G [00:11<00:09, 149MB/s]
- 
-- </pre> -
 -
-- 49%|████▊     | 1.22G/2.50G [00:11<00:09, 149MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-49%|████▊     | 1.22G/2.50G [00:11<00:09, 149MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|████▉     | 1.24G/2.50G [00:11<00:07, 177MB/s]
- 
-- </pre> -
 -
-- 50%|████▉     | 1.24G/2.50G [00:11<00:07, 177MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|████▉     | 1.24G/2.50G [00:11<00:07, 177MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 1.26G/2.50G [00:12<00:10, 132MB/s]
- 
-- </pre> -
 -
-- 50%|█████     | 1.26G/2.50G [00:12<00:10, 132MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 1.26G/2.50G [00:12<00:10, 132MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 51%|█████     | 1.28G/2.50G [00:12<00:08, 148MB/s]
- 
-- </pre> -
 -
-- 51%|█████     | 1.28G/2.50G [00:12<00:08, 148MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-51%|█████     | 1.28G/2.50G [00:12<00:08, 148MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 52%|█████▏    | 1.30G/2.50G [00:12<00:11, 109MB/s]
- 
-- </pre> -
 -
-- 52%|█████▏    | 1.30G/2.50G [00:12<00:11, 109MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-52%|█████▏    | 1.30G/2.50G [00:12<00:11, 109MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 53%|█████▎    | 1.32G/2.50G [00:12<00:09, 137MB/s]
- 
-- </pre> -
 -
-- 53%|█████▎    | 1.32G/2.50G [00:12<00:09, 137MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-53%|█████▎    | 1.32G/2.50G [00:12<00:09, 137MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 54%|█████▎    | 1.34G/2.50G [00:12<00:07, 163MB/s]
- 
-- </pre> -
 -
-- 54%|█████▎    | 1.34G/2.50G [00:12<00:07, 163MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-54%|█████▎    | 1.34G/2.50G [00:12<00:07, 163MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 54%|█████▍    | 1.36G/2.50G [00:12<00:10, 112MB/s]
- 
-- </pre> -
 -
-- 54%|█████▍    | 1.36G/2.50G [00:12<00:10, 112MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-54%|█████▍    | 1.36G/2.50G [00:12<00:10, 112MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 55%|█████▌    | 1.39G/2.50G [00:13<00:08, 143MB/s]
- 
-- </pre> -
 -
-- 55%|█████▌    | 1.39G/2.50G [00:13<00:08, 143MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-55%|█████▌    | 1.39G/2.50G [00:13<00:08, 143MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 56%|█████▌    | 1.41G/2.50G [00:13<00:08, 136MB/s]
- 
-- </pre> -
 -
-- 56%|█████▌    | 1.41G/2.50G [00:13<00:08, 136MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-56%|█████▌    | 1.41G/2.50G [00:13<00:08, 136MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 57%|█████▋    | 1.42G/2.50G [00:13<00:07, 147MB/s]
- 
-- </pre> -
 -
-- 57%|█████▋    | 1.42G/2.50G [00:13<00:07, 147MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-57%|█████▋    | 1.42G/2.50G [00:13<00:07, 147MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 58%|█████▊    | 1.44G/2.50G [00:13<00:08, 128MB/s]
- 
-- </pre> -
 -
-- 58%|█████▊    | 1.44G/2.50G [00:13<00:08, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-58%|█████▊    | 1.44G/2.50G [00:13<00:08, 128MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 58%|█████▊    | 1.45G/2.50G [00:13<00:08, 131MB/s]
- 
-- </pre> -
 -
-- 58%|█████▊    | 1.45G/2.50G [00:13<00:08, 131MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-58%|█████▊    | 1.45G/2.50G [00:13<00:08, 131MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 59%|█████▉    | 1.48G/2.50G [00:13<00:07, 150MB/s]
- 
-- </pre> -
 -
-- 59%|█████▉    | 1.48G/2.50G [00:13<00:07, 150MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-59%|█████▉    | 1.48G/2.50G [00:13<00:07, 150MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 60%|█████▉    | 1.50G/2.50G [00:13<00:06, 173MB/s]
- 
-- </pre> -
 -
-- 60%|█████▉    | 1.50G/2.50G [00:13<00:06, 173MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-60%|█████▉    | 1.50G/2.50G [00:13<00:06, 173MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 61%|██████    | 1.52G/2.50G [00:13<00:06, 172MB/s]
- 
-- </pre> -
 -
-- 61%|██████    | 1.52G/2.50G [00:13<00:06, 172MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-61%|██████    | 1.52G/2.50G [00:13<00:06, 172MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 1.54G/2.50G [00:13<00:05, 193MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 1.54G/2.50G [00:13<00:05, 193MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 1.54G/2.50G [00:13<00:05, 193MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 1.56G/2.50G [00:14<00:06, 161MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 1.56G/2.50G [00:14<00:06, 161MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 1.56G/2.50G [00:14<00:06, 161MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 63%|██████▎   | 1.58G/2.50G [00:14<00:06, 162MB/s]
- 
-- </pre> -
 -
-- 63%|██████▎   | 1.58G/2.50G [00:14<00:06, 162MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-63%|██████▎   | 1.58G/2.50G [00:14<00:06, 162MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 64%|██████▎   | 1.60G/2.50G [00:14<00:06, 144MB/s]
- 
-- </pre> -
 -
-- 64%|██████▎   | 1.60G/2.50G [00:14<00:06, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-64%|██████▎   | 1.60G/2.50G [00:14<00:06, 144MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 64%|██████▍   | 1.61G/2.50G [00:14<00:07, 123MB/s]
- 
-- </pre> -
 -
-- 64%|██████▍   | 1.61G/2.50G [00:14<00:07, 123MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-64%|██████▍   | 1.61G/2.50G [00:14<00:07, 123MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 65%|██████▍   | 1.63G/2.50G [00:14<00:06, 135MB/s]
- 
-- </pre> -
 -
-- 65%|██████▍   | 1.63G/2.50G [00:14<00:06, 135MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-65%|██████▍   | 1.63G/2.50G [00:14<00:06, 135MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 66%|██████▌   | 1.64G/2.50G [00:14<00:07, 126MB/s]
- 
-- </pre> -
 -
-- 66%|██████▌   | 1.64G/2.50G [00:14<00:07, 126MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-66%|██████▌   | 1.64G/2.50G [00:14<00:07, 126MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 66%|██████▌   | 1.65G/2.50G [00:15<00:07, 116MB/s]
- 
-- </pre> -
 -
-- 66%|██████▌   | 1.65G/2.50G [00:15<00:07, 116MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-66%|██████▌   | 1.65G/2.50G [00:15<00:07, 116MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 1.67G/2.50G [00:15<00:06, 129MB/s]
- 
-- </pre> -
 -
-- 67%|██████▋   | 1.67G/2.50G [00:15<00:06, 129MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 1.67G/2.50G [00:15<00:06, 129MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 1.69G/2.50G [00:15<00:06, 144MB/s]
- 
-- </pre> -
 -
-- 67%|██████▋   | 1.69G/2.50G [00:15<00:06, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 1.69G/2.50G [00:15<00:06, 144MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 68%|██████▊   | 1.71G/2.50G [00:15<00:05, 156MB/s]
- 
-- </pre> -
 -
-- 68%|██████▊   | 1.71G/2.50G [00:15<00:05, 156MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-68%|██████▊   | 1.71G/2.50G [00:15<00:05, 156MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 69%|██████▉   | 1.72G/2.50G [00:15<00:11, 73.0MB/s]
- 
-- </pre> -
 -
-- 69%|██████▉   | 1.72G/2.50G [00:15<00:11, 73.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-69%|██████▉   | 1.72G/2.50G [00:15<00:11, 73.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 70%|██████▉   | 1.75G/2.50G [00:16<00:10, 80.8MB/s]
- 
-- </pre> -
 -
-- 70%|██████▉   | 1.75G/2.50G [00:16<00:10, 80.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-70%|██████▉   | 1.75G/2.50G [00:16<00:10, 80.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 71%|███████   | 1.78G/2.50G [00:16<00:07, 109MB/s]
- 
-- </pre> -
 -
-- 71%|███████   | 1.78G/2.50G [00:16<00:07, 109MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-71%|███████   | 1.78G/2.50G [00:16<00:07, 109MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 72%|███████▏  | 1.79G/2.50G [00:16<00:07, 108MB/s]
- 
-- </pre> -
 -
-- 72%|███████▏  | 1.79G/2.50G [00:16<00:07, 108MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-72%|███████▏  | 1.79G/2.50G [00:16<00:07, 108MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 72%|███████▏  | 1.81G/2.50G [00:16<00:07, 104MB/s]
- 
-- </pre> -
 -
-- 72%|███████▏  | 1.81G/2.50G [00:16<00:07, 104MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-72%|███████▏  | 1.81G/2.50G [00:16<00:07, 104MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 73%|███████▎  | 1.82G/2.50G [00:16<00:06, 107MB/s]
- 
-- </pre> -
 -
-- 73%|███████▎  | 1.82G/2.50G [00:16<00:06, 107MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-73%|███████▎  | 1.82G/2.50G [00:16<00:06, 107MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 74%|███████▎  | 1.84G/2.50G [00:16<00:05, 129MB/s]
- 
-- </pre> -
 -
-- 74%|███████▎  | 1.84G/2.50G [00:16<00:05, 129MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-74%|███████▎  | 1.84G/2.50G [00:16<00:05, 129MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 74%|███████▍  | 1.86G/2.50G [00:16<00:05, 124MB/s]
- 
-- </pre> -
 -
-- 74%|███████▍  | 1.86G/2.50G [00:16<00:05, 124MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-74%|███████▍  | 1.86G/2.50G [00:16<00:05, 124MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 75%|███████▌  | 1.88G/2.50G [00:17<00:04, 155MB/s]
- 
-- </pre> -
 -
-- 75%|███████▌  | 1.88G/2.50G [00:17<00:04, 155MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-75%|███████▌  | 1.88G/2.50G [00:17<00:04, 155MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 76%|███████▌  | 1.90G/2.50G [00:17<00:04, 132MB/s]
- 
-- </pre> -
 -
-- 76%|███████▌  | 1.90G/2.50G [00:17<00:04, 132MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-76%|███████▌  | 1.90G/2.50G [00:17<00:04, 132MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 76%|███████▋  | 1.91G/2.50G [00:17<00:04, 133MB/s]
- 
-- </pre> -
 -
-- 76%|███████▋  | 1.91G/2.50G [00:17<00:04, 133MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-76%|███████▋  | 1.91G/2.50G [00:17<00:04, 133MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 77%|███████▋  | 1.93G/2.50G [00:18<00:10, 61.2MB/s]
- 
-- </pre> -
 -
-- 77%|███████▋  | 1.93G/2.50G [00:18<00:10, 61.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-77%|███████▋  | 1.93G/2.50G [00:18<00:10, 61.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 78%|███████▊  | 1.95G/2.50G [00:18<00:08, 69.8MB/s]
- 
-- </pre> -
 -
-- 78%|███████▊  | 1.95G/2.50G [00:18<00:08, 69.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-78%|███████▊  | 1.95G/2.50G [00:18<00:08, 69.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 78%|███████▊  | 1.96G/2.50G [00:18<00:08, 67.0MB/s]
- 
-- </pre> -
 -
-- 78%|███████▊  | 1.96G/2.50G [00:18<00:08, 67.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-78%|███████▊  | 1.96G/2.50G [00:18<00:08, 67.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 79%|███████▉  | 1.98G/2.50G [00:18<00:06, 87.2MB/s]
- 
-- </pre> -
 -
-- 79%|███████▉  | 1.98G/2.50G [00:18<00:06, 87.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-79%|███████▉  | 1.98G/2.50G [00:18<00:06, 87.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 80%|███████▉  | 1.99G/2.50G [00:18<00:05, 100MB/s]
- 
-- </pre> -
 -
-- 80%|███████▉  | 1.99G/2.50G [00:18<00:05, 100MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-80%|███████▉  | 1.99G/2.50G [00:18<00:05, 100MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 80%|████████  | 2.01G/2.50G [00:18<00:04, 124MB/s]
- 
-- </pre> -
 -
-- 80%|████████  | 2.01G/2.50G [00:18<00:04, 124MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-80%|████████  | 2.01G/2.50G [00:18<00:04, 124MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 81%|████████  | 2.03G/2.50G [00:18<00:04, 103MB/s]
- 
-- </pre> -
 -
-- 81%|████████  | 2.03G/2.50G [00:18<00:04, 103MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-81%|████████  | 2.03G/2.50G [00:18<00:04, 103MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 81%|████████▏ | 2.04G/2.50G [00:19<00:04, 107MB/s]
- 
-- </pre> -
 -
-- 81%|████████▏ | 2.04G/2.50G [00:19<00:04, 107MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-81%|████████▏ | 2.04G/2.50G [00:19<00:04, 107MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 82%|████████▏ | 2.05G/2.50G [00:19<00:04, 103MB/s]
- 
-- </pre> -
 -
-- 82%|████████▏ | 2.05G/2.50G [00:19<00:04, 103MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-82%|████████▏ | 2.05G/2.50G [00:19<00:04, 103MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 2.07G/2.50G [00:19<00:04, 113MB/s]
- 
-- </pre> -
 -
-- 83%|████████▎ | 2.07G/2.50G [00:19<00:04, 113MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 2.07G/2.50G [00:19<00:04, 113MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 2.09G/2.50G [00:19<00:03, 130MB/s]
- 
-- </pre> -
 -
-- 83%|████████▎ | 2.09G/2.50G [00:19<00:03, 130MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 2.09G/2.50G [00:19<00:03, 130MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 84%|████████▍ | 2.10G/2.50G [00:19<00:03, 128MB/s]
- 
-- </pre> -
 -
-- 84%|████████▍ | 2.10G/2.50G [00:19<00:03, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-84%|████████▍ | 2.10G/2.50G [00:19<00:03, 128MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 85%|████████▌ | 2.13G/2.50G [00:19<00:02, 169MB/s]
- 
-- </pre> -
 -
-- 85%|████████▌ | 2.13G/2.50G [00:19<00:02, 169MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-85%|████████▌ | 2.13G/2.50G [00:19<00:02, 169MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 86%|████████▌ | 2.15G/2.50G [00:19<00:02, 181MB/s]
- 
-- </pre> -
 -
-- 86%|████████▌ | 2.15G/2.50G [00:19<00:02, 181MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-86%|████████▌ | 2.15G/2.50G [00:19<00:02, 181MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 87%|████████▋ | 2.17G/2.50G [00:20<00:06, 58.4MB/s]
- 
-- </pre> -
 -
-- 87%|████████▋ | 2.17G/2.50G [00:20<00:06, 58.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-87%|████████▋ | 2.17G/2.50G [00:20<00:06, 58.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 87%|████████▋ | 2.18G/2.50G [00:20<00:04, 71.5MB/s]
- 
-- </pre> -
 -
-- 87%|████████▋ | 2.18G/2.50G [00:20<00:04, 71.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-87%|████████▋ | 2.18G/2.50G [00:20<00:04, 71.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 88%|████████▊ | 2.20G/2.50G [00:21<00:05, 54.7MB/s]
- 
-- </pre> -
 -
-- 88%|████████▊ | 2.20G/2.50G [00:21<00:05, 54.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-88%|████████▊ | 2.20G/2.50G [00:21<00:05, 54.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 88%|████████▊ | 2.21G/2.50G [00:21<00:04, 66.0MB/s]
- 
-- </pre> -
 -
-- 88%|████████▊ | 2.21G/2.50G [00:21<00:04, 66.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-88%|████████▊ | 2.21G/2.50G [00:21<00:04, 66.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 89%|████████▉ | 2.23G/2.50G [00:21<00:03, 80.4MB/s]
- 
-- </pre> -
 -
-- 89%|████████▉ | 2.23G/2.50G [00:21<00:03, 80.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-89%|████████▉ | 2.23G/2.50G [00:21<00:03, 80.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 90%|████████▉ | 2.24G/2.50G [00:21<00:03, 87.0MB/s]
- 
-- </pre> -
 -
-- 90%|████████▉ | 2.24G/2.50G [00:21<00:03, 87.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-90%|████████▉ | 2.24G/2.50G [00:21<00:03, 87.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 90%|█████████ | 2.26G/2.50G [00:21<00:03, 75.6MB/s]
- 
-- </pre> -
 -
-- 90%|█████████ | 2.26G/2.50G [00:21<00:03, 75.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-90%|█████████ | 2.26G/2.50G [00:21<00:03, 75.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 91%|█████████ | 2.28G/2.50G [00:22<00:02, 82.4MB/s]
- 
-- </pre> -
 -
-- 91%|█████████ | 2.28G/2.50G [00:22<00:02, 82.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-91%|█████████ | 2.28G/2.50G [00:22<00:02, 82.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 92%|█████████▏| 2.30G/2.50G [00:22<00:02, 98.3MB/s]
- 
-- </pre> -
 -
-- 92%|█████████▏| 2.30G/2.50G [00:22<00:02, 98.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-92%|█████████▏| 2.30G/2.50G [00:22<00:02, 98.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 93%|█████████▎| 2.33G/2.50G [00:22<00:01, 104MB/s]
- 
-- </pre> -
 -
-- 93%|█████████▎| 2.33G/2.50G [00:22<00:01, 104MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-93%|█████████▎| 2.33G/2.50G [00:22<00:01, 104MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 93%|█████████▎| 2.34G/2.50G [00:22<00:01, 103MB/s]
- 
-- </pre> -
 -
-- 93%|█████████▎| 2.34G/2.50G [00:22<00:01, 103MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-93%|█████████▎| 2.34G/2.50G [00:22<00:01, 103MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 94%|█████████▍| 2.35G/2.50G [00:22<00:01, 104MB/s]
- 
-- </pre> -
 -
-- 94%|█████████▍| 2.35G/2.50G [00:22<00:01, 104MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-94%|█████████▍| 2.35G/2.50G [00:22<00:01, 104MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 95%|█████████▍| 2.38G/2.50G [00:22<00:01, 116MB/s]
- 
-- </pre> -
 -
-- 95%|█████████▍| 2.38G/2.50G [00:22<00:01, 116MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-95%|█████████▍| 2.38G/2.50G [00:22<00:01, 116MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 96%|█████████▌| 2.40G/2.50G [00:23<00:00, 142MB/s]
- 
-- </pre> -
 -
-- 96%|█████████▌| 2.40G/2.50G [00:23<00:00, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-96%|█████████▌| 2.40G/2.50G [00:23<00:00, 142MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 96%|█████████▋| 2.41G/2.50G [00:23<00:00, 118MB/s]
- 
-- </pre> -
 -
-- 96%|█████████▋| 2.41G/2.50G [00:23<00:00, 118MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-96%|█████████▋| 2.41G/2.50G [00:23<00:00, 118MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 97%|█████████▋| 2.43G/2.50G [00:23<00:00, 123MB/s]
- 
-- </pre> -
 -
-- 97%|█████████▋| 2.43G/2.50G [00:23<00:00, 123MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-97%|█████████▋| 2.43G/2.50G [00:23<00:00, 123MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 98%|█████████▊| 2.44G/2.50G [00:23<00:00, 101MB/s]
- 
-- </pre> -
 -
-- 98%|█████████▊| 2.44G/2.50G [00:23<00:00, 101MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-98%|█████████▊| 2.44G/2.50G [00:23<00:00, 101MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 98%|█████████▊| 2.46G/2.50G [00:23<00:00, 118MB/s]
- 
-- </pre> -
 -
-- 98%|█████████▊| 2.46G/2.50G [00:23<00:00, 118MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-98%|█████████▊| 2.46G/2.50G [00:23<00:00, 118MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 99%|█████████▉| 2.47G/2.50G [00:23<00:00, 111MB/s]
- 
-- </pre> -
 -
-- 99%|█████████▉| 2.47G/2.50G [00:23<00:00, 111MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-99%|█████████▉| 2.47G/2.50G [00:23<00:00, 111MB/s]
-
-
-
-
-
-
-
-
-
-- 100%|█████████▉| 2.49G/2.50G [00:24<00:00, 121MB/s]
- 
-- </pre> -
 -
-- 100%|█████████▉| 2.49G/2.50G [00:24<00:00, 121MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|█████████▉| 2.49G/2.50G [00:24<00:00, 121MB/s]
-
-
-
-
-
-
-
-- 100%|██████████| 2.50G/2.50G [00:24<00:00, 112MB/s]
- 
-- </pre> -
 -
-- 100%|██████████| 2.50G/2.50G [00:24<00:00, 112MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 2.50G/2.50G [00:24<00:00, 112MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- </pre> -
 -
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0/6 [00:00<?, ?it/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 1/6 [00:12<01:02, 12.47s/it]
- 
-- </pre> -
 -
-- 17%|█▋        | 1/6 [00:12<01:02, 12.47s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 1/6 [00:12<01:02, 12.47s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 2/6 [00:23<00:46, 11.72s/it]
- 
-- </pre> -
 -
-- 33%|███▎      | 2/6 [00:23<00:46, 11.72s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 2/6 [00:23<00:46, 11.72s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 3/6 [00:35<00:34, 11.65s/it]
- 
-- </pre> -
 -
-- 50%|█████     | 3/6 [00:35<00:34, 11.65s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 3/6 [00:35<00:34, 11.65s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 4/6 [00:47<00:23, 11.81s/it]
- 
-- </pre> -
 -
-- 67%|██████▋   | 4/6 [00:47<00:23, 11.81s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 4/6 [00:47<00:23, 11.81s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 5/6 [00:58<00:11, 11.56s/it]
- 
-- </pre> -
 -
-- 83%|████████▎ | 5/6 [00:58<00:11, 11.56s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 5/6 [00:58<00:11, 11.56s/it]
-
-
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:08<00:00, 11.15s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:08<00:00, 11.15s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:08<00:00, 11.15s/it]
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:08<00:00, 11.46s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:08<00:00, 11.46s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:08<00:00, 11.46s/it]
-
-
-
-
-
-
-
-
 Or you can run all Detectors in one loop as for example:
-
-[12]:
+
+[ ]:
 
 
 # initialize the models
@@ -13016,386 +354,13 @@ order to load all the package's dependencies. You can do this by selecting t
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- </pre> -
 -
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0/6 [00:00<?, ?it/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 1/6 [00:24<02:01, 24.22s/it]
- 
-- </pre> -
 -
-- 17%|█▋        | 1/6 [00:24<02:01, 24.22s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 1/6 [00:24<02:01, 24.22s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 2/6 [00:48<01:36, 24.10s/it]
- 
-- </pre> -
 -
-- 33%|███▎      | 2/6 [00:48<01:36, 24.10s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 2/6 [00:48<01:36, 24.10s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 3/6 [01:17<01:19, 26.50s/it]
- 
-- </pre> -
 -
-- 50%|█████     | 3/6 [01:17<01:19, 26.50s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 3/6 [01:17<01:19, 26.50s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 4/6 [01:41<00:51, 25.50s/it]
- 
-- </pre> -
 -
-- 67%|██████▋   | 4/6 [01:41<00:51, 25.50s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 4/6 [01:41<00:51, 25.50s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 5/6 [02:04<00:24, 24.41s/it]
- 
-- </pre> -
 -
-- 83%|████████▎ | 5/6 [02:04<00:24, 24.41s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 5/6 [02:04<00:24, 24.41s/it]
-
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 1s 556ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 1s 556ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 1s 556ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 221ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 221ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 221ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 215ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 215ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 215ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 219ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 219ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 219ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 14ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 14ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 14ms/step
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [02:33<00:00, 26.04s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [02:33<00:00, 26.04s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [02:33<00:00, 26.04s/it]
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [02:33<00:00, 25.54s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [02:33<00:00, 25.54s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [02:33<00:00, 25.54s/it]
-
-
-
-
-
-
-
-
 The nested dictionary will be updated from containing only the file id’s and paths to the image files, to containing all calculated image features.
 
 
 Step 4: Convert analysis output to pandas dataframe and write csv
 The content of the nested dictionary can then conveniently be converted into a pandas dataframe for further analysis in Python, or be written as a csv file:
 
-[13]:
+[ ]:
 
 
 image_df = ammico.get_dataframe(image_dict)
@@ -13403,254 +368,34 @@ order to load all the package's dependencies. You can do this by selecting t
 
 
 Inspect the dataframe:
-
-[14]:
+
+[ ]:
 
 
 image_df.head(3)
 
 
 
-
-[14]:
-
-
-
-
-
-
-  
-    
-      filename 
-      face 
-      multiple_faces 
-      no_faces 
-      wears_mask 
-      age 
-      gender 
-      race 
-      emotion 
-      emotion (category) 
-      ... 
-      text_language 
-      text_english 
-      text_clean 
-      text_summary 
-      sentiment 
-      sentiment_score 
-      entity 
-      entity_type 
-      const_image_summary 
-      3_non-deterministic_summary 
-     
-  
-  
-    
-      0 
-      data-test/img4.png 
-      No 
-      No 
-      0 
-      [No] 
-      [None] 
-      [None] 
-      [None] 
-      [None] 
-      [None] 
-      ... 
-      en 
-      MOODOVIN XI 
-      XI 
-      MOODOVIN XI XI: Vladimir Putin, Vladimir Vlad... 
-      POSITIVE 
-      0.66 
-      [MOODOVIN XI] 
-      [ORG] 
-      a river running through a city next to tall bu... 
-      [buildings near a waterway with small boats pa... 
-     
-    
-      1 
-      data-test/img1.png 
-      No 
-      No 
-      0 
-      [No] 
-      [None] 
-      [None] 
-      [None] 
-      [None] 
-      [None] 
-      ... 
-      en 
-      SCATTERING THEORY The Quantum Theory of Nonrel... 
-      THEORY The Quantum Theory of Collisions JOHN R... 
-      SCATTERING THEORY The Quantum Theory of Nonre... 
-      POSITIVE 
-      0.91 
-      [Non, ##vist, Col, ##N, R, T, ##AYL, Universit... 
-      [MISC, MISC, MISC, ORG, PER, PER, ORG, ORG] 
-      a close up of a piece of paper with writing on it 
-      [a white paper with some black writing on it, ... 
-     
-    
-      2 
-      data-test/img2.png 
-      No 
-      No 
-      0 
-      [No] 
-      [None] 
-      [None] 
-      [None] 
-      [None] 
-      [None] 
-      ... 
-      en 
-      THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO M... 
-      THE PROBLEM DOM NVS TIO MINA Monographs on Num... 
-      H. H. W. WILKINSON: The Algebri 
-      NEGATIVE 
-      0.97 
-      [ALGEBRAIC EIGENVAL, NVS TIO MI, J, H, WILKINSON] 
-      [MISC, ORG, ORG, ORG, ORG] 
-      a yellow book with green lettering on it 
-      [an old book with a picture of the slogan of t... 
-     
-  
-
-3 rows × 21 columns
-
-
 Or write to a csv file:
-
-[15]:
+
+[ ]:
 
 
 image_df.to_csv("/content/drive/MyDrive/misinformation-data/data_out.csv")
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-OSError                                   Traceback (most recent call last)
-Cell In[15], line 1
-----> 1 image_df.to_csv("/content/drive/MyDrive/misinformation-data/data_out.csv")
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/pandas/util/_decorators.py:333, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
-    327 if len(args) > num_allow_args:
-    328     warnings.warn(
-    329         msg.format(arguments=_format_argument_list(allow_args)),
-    330         FutureWarning,
-    331         stacklevel=find_stack_level(),
-    332     )
---> 333 return func(*args, **kwargs)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/pandas/core/generic.py:3961, in NDFrame.to_csv(self, path_or_buf, sep, na_rep, float_format, columns, header, index, index_label, mode, encoding, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, decimal, errors, storage_options)
-   3950 df = self if isinstance(self, ABCDataFrame) else self.to_frame()
-   3952 formatter = DataFrameFormatter(
-   3953     frame=df,
-   3954     header=header,
-   (...)
-   3958     decimal=decimal,
-   3959 )
--> 3961 return DataFrameRenderer(formatter).to_csv(
-   3962     path_or_buf,
-   3963     lineterminator=lineterminator,
-   3964     sep=sep,
-   3965     encoding=encoding,
-   3966     errors=errors,
-   3967     compression=compression,
-   3968     quoting=quoting,
-   3969     columns=columns,
-   3970     index_label=index_label,
-   3971     mode=mode,
-   3972     chunksize=chunksize,
-   3973     quotechar=quotechar,
-   3974     date_format=date_format,
-   3975     doublequote=doublequote,
-   3976     escapechar=escapechar,
-   3977     storage_options=storage_options,
-   3978 )
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/pandas/io/formats/format.py:1014, in DataFrameRenderer.to_csv(self, path_or_buf, encoding, sep, columns, index_label, mode, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, errors, storage_options)
-    993     created_buffer = False
-    995 csv_formatter = CSVFormatter(
-    996     path_or_buf=path_or_buf,
-    997     lineterminator=lineterminator,
-   (...)
-   1012     formatter=self.fmt,
-   1013 )
--> 1014 csv_formatter.save()
-   1016 if created_buffer:
-   1017     assert isinstance(path_or_buf, StringIO)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/pandas/io/formats/csvs.py:251, in CSVFormatter.save(self)
-    247 """
-    248 Create the writer & save.
-    249 """
-    250 # apply compression and byte/text conversion
---> 251 with get_handle(
-    252     self.filepath_or_buffer,
-    253     self.mode,
-    254     encoding=self.encoding,
-    255     errors=self.errors,
-    256     compression=self.compression,
-    257     storage_options=self.storage_options,
-    258 ) as handles:
-    259     # Note: self.encoding is irrelevant here
-    260     self.writer = csvlib.writer(
-    261         handles.handle,
-    262         lineterminator=self.lineterminator,
-   (...)
-    267         quotechar=self.quotechar,
-    268     )
-    270     self._save()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/pandas/io/common.py:749, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
-    747 # Only for write methods
-    748 if "r" not in mode and is_path:
---> 749     check_parent_directory(str(handle))
-    751 if compression:
-    752     if compression != "zstd":
-    753         # compression libraries do not like an explicit text-mode
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/pandas/io/common.py:616, in check_parent_directory(path)
-    614 parent = Path(path).parent
-    615 if not parent.is_dir():
---> 616     raise OSError(rf"Cannot save file into a non-existent directory: '{parent}'")
-
-OSError: Cannot save file into a non-existent directory: '/content/drive/MyDrive/misinformation-data'
-
-
 
 
 
 The detector modules
 The different detector modules with their options are explained in more detail in this section. ## Text detector Text on the images can be extracted using the TextDetector class (text module). The text is initally extracted using the Google Cloud Vision API and then translated into English with googletrans. The translated text is cleaned of whitespace, linebreaks, and numbers using Python syntax and spaCy.
-
+
 The user can set if the text should be further summarized, and analyzed for sentiment and named entity recognition, by setting the keyword analyse_text to True (the default is False). If set, the transformers pipeline is used for each of these tasks, with the default models as of 03/2023. Other models can be selected by setting the optional keyword model_names to a list of selected models, on for each task:
 model_names=["sshleifer/distilbart-cnn-12-6", "distilbert-base-uncased-finetuned-sst-2-english", "dbmdz/bert-large-cased-finetuned-conll03-english"] for summary, sentiment, and ner. To be even more specific, revision numbers can also be selected by specifying the optional keyword revision_numbers to a list of revision numbers for each model, for example revision_numbers=["a4f8f3e", "af0f99b", "f2482bf"].
 Please note that for the Google Cloud Vision API (the TextDetector class) you need to set a key in order to process the images. This key is ideally set as an environment variable using for example
 
-[16]:
+[ ]:
 
 
 # os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/content/drive/MyDrive/misinformation-data/misinformation-campaign-981aa55a3b13.json"
@@ -13659,8 +404,8 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 where you place the key on your Google Drive if running on colab, or place it in a local folder on your machine.
 Summarizing, the text detection is carried out using the following method call and keywords, where analyse_text, model_names, and revision_numbers are optional:
-
-[17]:
+
+[ ]:
 
 
 for num, key in tqdm(enumerate(image_dict.keys()), total=len(image_dict)):  # loop through all images
@@ -13676,204 +421,6 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- </pre> -
 -
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0/6 [00:00<?, ?it/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 1/6 [00:09<00:47,  9.51s/it]
- 
-- </pre> -
 -
-- 17%|█▋        | 1/6 [00:09<00:47,  9.51s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 1/6 [00:09<00:47,  9.51s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 2/6 [00:18<00:36,  9.10s/it]
- 
-- </pre> -
 -
-- 33%|███▎      | 2/6 [00:18<00:36,  9.10s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 2/6 [00:18<00:36,  9.10s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 3/6 [00:27<00:27,  9.07s/it]
- 
-- </pre> -
 -
-- 50%|█████     | 3/6 [00:27<00:27,  9.07s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 3/6 [00:27<00:27,  9.07s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 4/6 [00:37<00:18,  9.49s/it]
- 
-- </pre> -
 -
-- 67%|██████▋   | 4/6 [00:37<00:18,  9.49s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 4/6 [00:37<00:18,  9.49s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 5/6 [00:46<00:09,  9.38s/it]
- 
-- </pre> -
 -
-- 83%|████████▎ | 5/6 [00:46<00:09,  9.38s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 5/6 [00:46<00:09,  9.38s/it]
-
-
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [00:56<00:00,  9.41s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [00:56<00:00,  9.41s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [00:56<00:00,  9.41s/it]
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [00:56<00:00,  9.36s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [00:56<00:00,  9.36s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [00:56<00:00,  9.36s/it]
-
-
-
-
-
-
-
-
 The models can be adapted interactively in the notebook interface and the best models can then be used in a subsequent analysis of the whole data set.
 A detailed description of the output keys and data types is given in the following table.
 
@@ -13925,7 +472,7 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 Image summary and query
 The SummaryDetector can be used to generate image captions (summary) as well as visual question answering (VQA).
-
+
 This module is based on the LAVIS library. Since the models can be quite large, an initial object is created which will load the necessary models into RAM/VRAM and then use them in the analysis. The user can specify the type of analysis to be performed using the analysis_type keyword. Setting it to summary will generate a caption (summary), questions will prepare answers (VQA) to a list of questions as set by the user,
 summary_and_questions will do both. Note that the desired analysis type needs to be set here in the initialization of the detector object, and not when running the analysis for each image; the same holds true for the selected model.
 The implemented models are listed below.
@@ -13971,15 +518,15 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 Please note that base, large and vqa models can be run on the base TPU video card in Google Colab. To run any advanced BLIP2 models you need more than 20 gb of video memory, so you need to connect a paid A100 in Google Colab.
 First of all, we can run only the summary module analysis_type. You can choose a base or a large model_type.
 
-[18]:
+[ ]:
 
 
 image_summary_detector = ammico.SummaryDetector(image_dict, analysis_type="summary", model_type="base")
 
 
 
-
-[19]:
+
+[ ]:
 
 
 for num, key in tqdm(enumerate(image_dict.keys()),total=len(image_dict)):
@@ -13991,207 +538,9 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- </pre> -
 -
-- 0%|          | 0/6 [00:00<?, ?it/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0/6 [00:00<?, ?it/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 1/6 [00:13<01:06, 13.34s/it]
- 
-- </pre> -
 -
-- 17%|█▋        | 1/6 [00:13<01:06, 13.34s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 1/6 [00:13<01:06, 13.34s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 2/6 [00:24<00:48, 12.03s/it]
- 
-- </pre> -
 -
-- 33%|███▎      | 2/6 [00:24<00:48, 12.03s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 2/6 [00:24<00:48, 12.03s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|█████     | 3/6 [00:34<00:33, 11.26s/it]
- 
-- </pre> -
 -
-- 50%|█████     | 3/6 [00:34<00:33, 11.26s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|█████     | 3/6 [00:34<00:33, 11.26s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 4/6 [00:47<00:23, 11.73s/it]
- 
-- </pre> -
 -
-- 67%|██████▋   | 4/6 [00:47<00:23, 11.73s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 4/6 [00:47<00:23, 11.73s/it]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 5/6 [00:58<00:11, 11.50s/it]
- 
-- </pre> -
 -
-- 83%|████████▎ | 5/6 [00:58<00:11, 11.50s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 5/6 [00:58<00:11, 11.50s/it]
-
-
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:09<00:00, 11.36s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:09<00:00, 11.36s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:09<00:00, 11.36s/it]
-
-
-
-
-
-
-
-- 100%|██████████| 6/6 [01:09<00:00, 11.57s/it]
- 
-- </pre> -
 -
-- 100%|██████████| 6/6 [01:09<00:00, 11.57s/it]
- 
-- end{sphinxVerbatim} -
 -
-
-100%|██████████| 6/6 [01:09<00:00, 11.57s/it]
-
-
-
-
-
-
-
-
 For VQA, a list of questions needs to be passed when carrying out the analysis; these should be given as a list of strings.
 
-[20]:
+[ ]:
 
 
 list_of_questions = [
@@ -14203,8 +552,8 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 If you want to execute only the VQA module without captioning, just specify the analysis_type as questions and model_type as vqa.
-
-[21]:
+
+[ ]:
 
 
 image_summary_vqa_detector = ammico.SummaryDetector(image_dict, analysis_type="questions",
@@ -14220,2124 +569,9 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0.00/1.35G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- 0%|          | 0.00/1.35G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0.00/1.35G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 4.01M/1.35G [00:00<00:56, 25.5MB/s]
- 
-- </pre> -
 -
-- 0%|          | 4.01M/1.35G [00:00<00:56, 25.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 4.01M/1.35G [00:00<00:56, 25.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 11.3M/1.35G [00:00<00:31, 45.0MB/s]
- 
-- </pre> -
 -
-- 1%|          | 11.3M/1.35G [00:00<00:31, 45.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 11.3M/1.35G [00:00<00:31, 45.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|▏         | 17.8M/1.35G [00:00<00:30, 47.5MB/s]
- 
-- </pre> -
 -
-- 1%|▏         | 17.8M/1.35G [00:00<00:30, 47.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|▏         | 17.8M/1.35G [00:00<00:30, 47.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 24.0M/1.35G [00:00<00:28, 49.4MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 24.0M/1.35G [00:00<00:28, 49.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 24.0M/1.35G [00:00<00:28, 49.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 32.0M/1.35G [00:00<00:26, 53.6MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 32.0M/1.35G [00:00<00:26, 53.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 32.0M/1.35G [00:00<00:26, 53.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 40.0M/1.35G [00:00<00:26, 52.8MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 40.0M/1.35G [00:00<00:26, 52.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 40.0M/1.35G [00:00<00:26, 52.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 48.0M/1.35G [00:00<00:23, 60.4MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 48.0M/1.35G [00:00<00:23, 60.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 48.0M/1.35G [00:00<00:23, 60.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 56.0M/1.35G [00:01<00:22, 61.7MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 56.0M/1.35G [00:01<00:22, 61.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 56.0M/1.35G [00:01<00:22, 61.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 5%|▍         | 64.0M/1.35G [00:01<00:21, 63.8MB/s]
- 
-- </pre> -
 -
-- 5%|▍         | 64.0M/1.35G [00:01<00:21, 63.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-5%|▍         | 64.0M/1.35G [00:01<00:21, 63.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 5%|▌         | 72.0M/1.35G [00:01<00:26, 51.4MB/s]
- 
-- </pre> -
 -
-- 5%|▌         | 72.0M/1.35G [00:01<00:26, 51.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-5%|▌         | 72.0M/1.35G [00:01<00:26, 51.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▌         | 80.0M/1.35G [00:01<00:30, 44.7MB/s]
- 
-- </pre> -
 -
-- 6%|▌         | 80.0M/1.35G [00:01<00:30, 44.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▌         | 80.0M/1.35G [00:01<00:30, 44.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▋         | 88.0M/1.35G [00:01<00:26, 50.3MB/s]
- 
-- </pre> -
 -
-- 6%|▋         | 88.0M/1.35G [00:01<00:26, 50.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▋         | 88.0M/1.35G [00:01<00:26, 50.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 7%|▋         | 96.0M/1.35G [00:01<00:28, 47.3MB/s]
- 
-- </pre> -
 -
-- 7%|▋         | 96.0M/1.35G [00:01<00:28, 47.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-7%|▋         | 96.0M/1.35G [00:01<00:28, 47.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 104M/1.35G [00:02<00:27, 48.3MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 104M/1.35G [00:02<00:27, 48.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 104M/1.35G [00:02<00:27, 48.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 112M/1.35G [00:02<00:26, 50.2MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 112M/1.35G [00:02<00:26, 50.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 112M/1.35G [00:02<00:26, 50.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 9%|▊         | 120M/1.35G [00:02<00:25, 51.6MB/s]
- 
-- </pre> -
 -
-- 9%|▊         | 120M/1.35G [00:02<00:25, 51.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-9%|▊         | 120M/1.35G [00:02<00:25, 51.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 10%|▉         | 136M/1.35G [00:02<00:17, 74.9MB/s]
- 
-- </pre> -
 -
-- 10%|▉         | 136M/1.35G [00:02<00:17, 74.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-10%|▉         | 136M/1.35G [00:02<00:17, 74.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 11%|█         | 153M/1.35G [00:02<00:13, 98.4MB/s]
- 
-- </pre> -
 -
-- 11%|█         | 153M/1.35G [00:02<00:13, 98.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-11%|█         | 153M/1.35G [00:02<00:13, 98.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 12%|█▏        | 168M/1.35G [00:02<00:11, 112MB/s]
- 
-- </pre> -
 -
-- 12%|█▏        | 168M/1.35G [00:02<00:11, 112MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-12%|█▏        | 168M/1.35G [00:02<00:11, 112MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 13%|█▎        | 184M/1.35G [00:02<00:10, 122MB/s]
- 
-- </pre> -
 -
-- 13%|█▎        | 184M/1.35G [00:02<00:10, 122MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-13%|█▎        | 184M/1.35G [00:02<00:10, 122MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 15%|█▍        | 207M/1.35G [00:02<00:08, 153MB/s]
- 
-- </pre> -
 -
-- 15%|█▍        | 207M/1.35G [00:02<00:08, 153MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-15%|█▍        | 207M/1.35G [00:02<00:08, 153MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 16%|█▌        | 224M/1.35G [00:03<00:09, 129MB/s]
- 
-- </pre> -
 -
-- 16%|█▌        | 224M/1.35G [00:03<00:09, 129MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-16%|█▌        | 224M/1.35G [00:03<00:09, 129MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 240M/1.35G [00:03<00:09, 131MB/s]
- 
-- </pre> -
 -
-- 17%|█▋        | 240M/1.35G [00:03<00:09, 131MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 240M/1.35G [00:03<00:09, 131MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 19%|█▊        | 256M/1.35G [00:03<00:09, 124MB/s]
- 
-- </pre> -
 -
-- 19%|█▊        | 256M/1.35G [00:03<00:09, 124MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-19%|█▊        | 256M/1.35G [00:03<00:09, 124MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 20%|██        | 280M/1.35G [00:03<00:08, 144MB/s]
- 
-- </pre> -
 -
-- 20%|██        | 280M/1.35G [00:03<00:08, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-20%|██        | 280M/1.35G [00:03<00:08, 144MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 21%|██▏       | 294M/1.35G [00:03<00:08, 136MB/s]
- 
-- </pre> -
 -
-- 21%|██▏       | 294M/1.35G [00:03<00:08, 136MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-21%|██▏       | 294M/1.35G [00:03<00:08, 136MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 23%|██▎       | 312M/1.35G [00:03<00:07, 147MB/s]
- 
-- </pre> -
 -
-- 23%|██▎       | 312M/1.35G [00:03<00:07, 147MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-23%|██▎       | 312M/1.35G [00:03<00:07, 147MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 24%|██▎       | 326M/1.35G [00:03<00:07, 148MB/s]
- 
-- </pre> -
 -
-- 24%|██▎       | 326M/1.35G [00:03<00:07, 148MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-24%|██▎       | 326M/1.35G [00:03<00:07, 148MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 26%|██▌       | 352M/1.35G [00:04<00:06, 172MB/s]
- 
-- </pre> -
 -
-- 26%|██▌       | 352M/1.35G [00:04<00:06, 172MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-26%|██▌       | 352M/1.35G [00:04<00:06, 172MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 27%|██▋       | 369M/1.35G [00:04<00:07, 148MB/s]
- 
-- </pre> -
 -
-- 27%|██▋       | 369M/1.35G [00:04<00:07, 148MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-27%|██▋       | 369M/1.35G [00:04<00:07, 148MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 28%|██▊       | 388M/1.35G [00:04<00:06, 161MB/s]
- 
-- </pre> -
 -
-- 28%|██▊       | 388M/1.35G [00:04<00:06, 161MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-28%|██▊       | 388M/1.35G [00:04<00:06, 161MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 30%|██▉       | 413M/1.35G [00:04<00:05, 187MB/s]
- 
-- </pre> -
 -
-- 30%|██▉       | 413M/1.35G [00:04<00:05, 187MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-30%|██▉       | 413M/1.35G [00:04<00:05, 187MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 32%|███▏      | 437M/1.35G [00:04<00:04, 207MB/s]
- 
-- </pre> -
 -
-- 32%|███▏      | 437M/1.35G [00:04<00:04, 207MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-32%|███▏      | 437M/1.35G [00:04<00:04, 207MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 461M/1.35G [00:04<00:04, 217MB/s]
- 
-- </pre> -
 -
-- 33%|███▎      | 461M/1.35G [00:04<00:04, 217MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 461M/1.35G [00:04<00:04, 217MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 35%|███▌      | 486M/1.35G [00:04<00:04, 232MB/s]
- 
-- </pre> -
 -
-- 35%|███▌      | 486M/1.35G [00:04<00:04, 232MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-35%|███▌      | 486M/1.35G [00:04<00:04, 232MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 37%|███▋      | 511M/1.35G [00:04<00:03, 241MB/s]
- 
-- </pre> -
 -
-- 37%|███▋      | 511M/1.35G [00:04<00:03, 241MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-37%|███▋      | 511M/1.35G [00:04<00:03, 241MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 39%|███▉      | 537M/1.35G [00:04<00:03, 250MB/s]
- 
-- </pre> -
 -
-- 39%|███▉      | 537M/1.35G [00:04<00:03, 250MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-39%|███▉      | 537M/1.35G [00:04<00:03, 250MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 41%|████      | 561M/1.35G [00:05<00:03, 244MB/s]
- 
-- </pre> -
 -
-- 41%|████      | 561M/1.35G [00:05<00:03, 244MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-41%|████      | 561M/1.35G [00:05<00:03, 244MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 42%|████▏     | 585M/1.35G [00:05<00:03, 236MB/s]
- 
-- </pre> -
 -
-- 42%|████▏     | 585M/1.35G [00:05<00:03, 236MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-42%|████▏     | 585M/1.35G [00:05<00:03, 236MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▍     | 609M/1.35G [00:05<00:03, 241MB/s]
- 
-- </pre> -
 -
-- 44%|████▍     | 609M/1.35G [00:05<00:03, 241MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▍     | 609M/1.35G [00:05<00:03, 241MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▌     | 632M/1.35G [00:05<00:03, 200MB/s]
- 
-- </pre> -
 -
-- 46%|████▌     | 632M/1.35G [00:05<00:03, 200MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▌     | 632M/1.35G [00:05<00:03, 200MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 47%|████▋     | 652M/1.35G [00:06<00:16, 47.1MB/s]
- 
-- </pre> -
 -
-- 47%|████▋     | 652M/1.35G [00:06<00:16, 47.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-47%|████▋     | 652M/1.35G [00:06<00:16, 47.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 49%|████▊     | 672M/1.35G [00:07<00:14, 52.7MB/s]
- 
-- </pre> -
 -
-- 49%|████▊     | 672M/1.35G [00:07<00:14, 52.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-49%|████▊     | 672M/1.35G [00:07<00:14, 52.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|████▉     | 688M/1.35G [00:07<00:11, 62.2MB/s]
- 
-- </pre> -
 -
-- 50%|████▉     | 688M/1.35G [00:07<00:11, 62.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|████▉     | 688M/1.35G [00:07<00:11, 62.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 51%|█████     | 704M/1.35G [00:07<00:09, 73.5MB/s]
- 
-- </pre> -
 -
-- 51%|█████     | 704M/1.35G [00:07<00:09, 73.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-51%|█████     | 704M/1.35G [00:07<00:09, 73.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 52%|█████▏    | 720M/1.35G [00:07<00:08, 85.8MB/s]
- 
-- </pre> -
 -
-- 52%|█████▏    | 720M/1.35G [00:07<00:08, 85.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-52%|█████▏    | 720M/1.35G [00:07<00:08, 85.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 54%|█████▍    | 742M/1.35G [00:07<00:06, 109MB/s]
- 
-- </pre> -
 -
-- 54%|█████▍    | 742M/1.35G [00:07<00:06, 109MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-54%|█████▍    | 742M/1.35G [00:07<00:06, 109MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 55%|█████▌    | 763M/1.35G [00:07<00:04, 130MB/s]
- 
-- </pre> -
 -
-- 55%|█████▌    | 763M/1.35G [00:07<00:04, 130MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-55%|█████▌    | 763M/1.35G [00:07<00:04, 130MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 57%|█████▋    | 780M/1.35G [00:07<00:04, 133MB/s]
- 
-- </pre> -
 -
-- 57%|█████▋    | 780M/1.35G [00:07<00:04, 133MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-57%|█████▋    | 780M/1.35G [00:07<00:04, 133MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 58%|█████▊    | 800M/1.35G [00:07<00:04, 128MB/s]
- 
-- </pre> -
 -
-- 58%|█████▊    | 800M/1.35G [00:07<00:04, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-58%|█████▊    | 800M/1.35G [00:07<00:04, 128MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 59%|█████▉    | 816M/1.35G [00:08<00:06, 89.2MB/s]
- 
-- </pre> -
 -
-- 59%|█████▉    | 816M/1.35G [00:08<00:06, 89.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-59%|█████▉    | 816M/1.35G [00:08<00:06, 89.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 61%|██████    | 840M/1.35G [00:08<00:05, 102MB/s]
- 
-- </pre> -
 -
-- 61%|██████    | 840M/1.35G [00:08<00:05, 102MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-61%|██████    | 840M/1.35G [00:08<00:05, 102MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 858M/1.35G [00:08<00:04, 116MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 858M/1.35G [00:08<00:04, 116MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 858M/1.35G [00:08<00:04, 116MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 63%|██████▎   | 873M/1.35G [00:08<00:04, 125MB/s]
- 
-- </pre> -
 -
-- 63%|██████▎   | 873M/1.35G [00:08<00:04, 125MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-63%|██████▎   | 873M/1.35G [00:08<00:04, 125MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 65%|██████▍   | 896M/1.35G [00:08<00:03, 141MB/s]
- 
-- </pre> -
 -
-- 65%|██████▍   | 896M/1.35G [00:08<00:03, 141MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-65%|██████▍   | 896M/1.35G [00:08<00:03, 141MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 918M/1.35G [00:08<00:02, 162MB/s]
- 
-- </pre> -
 -
-- 67%|██████▋   | 918M/1.35G [00:08<00:02, 162MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 918M/1.35G [00:08<00:02, 162MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 68%|██████▊   | 936M/1.35G [00:09<00:03, 144MB/s]
- 
-- </pre> -
 -
-- 68%|██████▊   | 936M/1.35G [00:09<00:03, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-68%|██████▊   | 936M/1.35G [00:09<00:03, 144MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 69%|██████▉   | 957M/1.35G [00:09<00:06, 68.2MB/s]
- 
-- </pre> -
 -
-- 69%|██████▉   | 957M/1.35G [00:09<00:06, 68.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-69%|██████▉   | 957M/1.35G [00:09<00:06, 68.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 71%|███████▏  | 985M/1.35G [00:09<00:04, 95.8MB/s]
- 
-- </pre> -
 -
-- 71%|███████▏  | 985M/1.35G [00:09<00:04, 95.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-71%|███████▏  | 985M/1.35G [00:09<00:04, 95.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 73%|███████▎  | 0.98G/1.35G [00:09<00:04, 93.5MB/s]
- 
-- </pre> -
 -
-- 73%|███████▎  | 0.98G/1.35G [00:09<00:04, 93.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-73%|███████▎  | 0.98G/1.35G [00:09<00:04, 93.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 74%|███████▎  | 0.99G/1.35G [00:10<00:04, 92.4MB/s]
- 
-- </pre> -
 -
-- 74%|███████▎  | 0.99G/1.35G [00:10<00:04, 92.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-74%|███████▎  | 0.99G/1.35G [00:10<00:04, 92.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 75%|███████▍  | 1.00G/1.35G [00:10<00:03, 98.6MB/s]
- 
-- </pre> -
 -
-- 75%|███████▍  | 1.00G/1.35G [00:10<00:03, 98.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-75%|███████▍  | 1.00G/1.35G [00:10<00:03, 98.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 76%|███████▌  | 1.02G/1.35G [00:10<00:03, 100MB/s]
- 
-- </pre> -
 -
-- 76%|███████▌  | 1.02G/1.35G [00:10<00:03, 100MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-76%|███████▌  | 1.02G/1.35G [00:10<00:03, 100MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 78%|███████▊  | 1.05G/1.35G [00:10<00:02, 134MB/s]
- 
-- </pre> -
 -
-- 78%|███████▊  | 1.05G/1.35G [00:10<00:02, 134MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-78%|███████▊  | 1.05G/1.35G [00:10<00:02, 134MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 80%|███████▉  | 1.07G/1.35G [00:10<00:01, 157MB/s]
- 
-- </pre> -
 -
-- 80%|███████▉  | 1.07G/1.35G [00:10<00:01, 157MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-80%|███████▉  | 1.07G/1.35G [00:10<00:01, 157MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 81%|████████  | 1.09G/1.35G [00:11<00:04, 68.1MB/s]
- 
-- </pre> -
 -
-- 81%|████████  | 1.09G/1.35G [00:11<00:04, 68.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-81%|████████  | 1.09G/1.35G [00:11<00:04, 68.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 1.12G/1.35G [00:11<00:02, 93.6MB/s]
- 
-- </pre> -
 -
-- 83%|████████▎ | 1.12G/1.35G [00:11<00:02, 93.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 1.12G/1.35G [00:11<00:02, 93.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 84%|████████▍ | 1.13G/1.35G [00:11<00:02, 104MB/s]
- 
-- </pre> -
 -
-- 84%|████████▍ | 1.13G/1.35G [00:11<00:02, 104MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-84%|████████▍ | 1.13G/1.35G [00:11<00:02, 104MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 85%|████████▌ | 1.15G/1.35G [00:11<00:01, 113MB/s]
- 
-- </pre> -
 -
-- 85%|████████▌ | 1.15G/1.35G [00:11<00:01, 113MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-85%|████████▌ | 1.15G/1.35G [00:11<00:01, 113MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 87%|████████▋ | 1.17G/1.35G [00:11<00:01, 112MB/s]
- 
-- </pre> -
 -
-- 87%|████████▋ | 1.17G/1.35G [00:11<00:01, 112MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-87%|████████▋ | 1.17G/1.35G [00:11<00:01, 112MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 88%|████████▊ | 1.18G/1.35G [00:12<00:03, 52.3MB/s]
- 
-- </pre> -
 -
-- 88%|████████▊ | 1.18G/1.35G [00:12<00:03, 52.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-88%|████████▊ | 1.18G/1.35G [00:12<00:03, 52.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 89%|████████▉ | 1.20G/1.35G [00:12<00:02, 66.7MB/s]
- 
-- </pre> -
 -
-- 89%|████████▉ | 1.20G/1.35G [00:12<00:02, 66.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-89%|████████▉ | 1.20G/1.35G [00:12<00:02, 66.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 90%|████████▉ | 1.21G/1.35G [00:13<00:03, 45.0MB/s]
- 
-- </pre> -
 -
-- 90%|████████▉ | 1.21G/1.35G [00:13<00:03, 45.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-90%|████████▉ | 1.21G/1.35G [00:13<00:03, 45.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 91%|█████████ | 1.23G/1.35G [00:13<00:02, 44.7MB/s]
- 
-- </pre> -
 -
-- 91%|█████████ | 1.23G/1.35G [00:13<00:02, 44.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-91%|█████████ | 1.23G/1.35G [00:13<00:02, 44.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 91%|█████████▏| 1.23G/1.35G [00:13<00:01, 96.0MB/s]
- 
-- </pre> -
 -
-- 91%|█████████▏| 1.23G/1.35G [00:13<00:01, 96.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-91%|█████████▏| 1.23G/1.35G [00:13<00:01, 96.0MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-OSError                                   Traceback (most recent call last)
-Cell In[21], line 1
-----> 1 image_summary_vqa_detector = ammico.SummaryDetector(image_dict, analysis_type="questions", 
-      2                                                     model_type="vqa")
-      4 for num, key in tqdm(enumerate(image_dict.keys()),total=len(image_dict)):
-      5     image_dict[key] = image_summary_vqa_detector.analyse_image(subdict=image_dict[key],
-      6                                                                analysis_type="questions",
-      7                                                                list_of_questions = list_of_questions)
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:141, in SummaryDetector.__init__(self, subdict, model_type, analysis_type, list_of_questions, summary_model, summary_vis_processors, summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors, summary_vqa_model_new, summary_vqa_vis_processors_new, summary_vqa_txt_processors_new, device_type)
-    127     self.summary_vis_processors = summary_vis_processors
-    128 if (
-    129     model_type in self.allowed_model_types
-    130     and (summary_vqa_model is None)
-   (...)
-    135     )
-    136 ):
-    137     (
-    138         self.summary_vqa_model,
-    139         self.summary_vqa_vis_processors,
-    140         self.summary_vqa_txt_processors,
---> 141     ) = self.load_vqa_model()
-    142 else:
-    143     self.summary_vqa_model = summary_vqa_model
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:232, in SummaryDetector.load_vqa_model(self)
-    216 def load_vqa_model(self):
-    217     """
-    218     Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
-    219
-   (...)
-    226
-    227     """
-    228     (
-    229         summary_vqa_model,
-    230         summary_vqa_vis_processors,
-    231         summary_vqa_txt_processors,
---> 232     ) = load_model_and_preprocess(
-    233         name="blip_vqa",
-    234         model_type="vqav2",
-    235         is_eval=True,
-    236         device=self.summary_device,
-    237     )
-    238     return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195, in load_model_and_preprocess(name, model_type, is_eval, device)
-    192 model_cls = registry.get_model_class(name)
-    194 # load model
---> 195 model = model_cls.from_pretrained(model_type=model_type)
-    197 if is_eval:
-    198     model.eval()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70, in BaseModel.from_pretrained(cls, model_type)
-     60 """
-     61 Build a pretrained model from default configuration file, specified by model_type.
-     62
-   (...)
-     67     - model (nn.Module): pretrained or finetuned model, depending on the configuration.
-     68 """
-     69 model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
----> 70 model = cls.from_config(model_cfg)
-     72 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_vqa.py:373, in BlipVQA.from_config(cls, cfg)
-    364 max_txt_len = cfg.get("max_txt_len", 35)
-    366 model = cls(
-    367     image_encoder=image_encoder,
-    368     text_encoder=text_encoder,
-    369     text_decoder=text_decoder,
-    370     max_txt_len=max_txt_len,
-    371 )
---> 373 model.load_checkpoint_from_config(cfg)
-    375 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:95, in BaseModel.load_checkpoint_from_config(self, cfg, **kwargs)
-     91     finetune_path = cfg.get("finetuned", None)
-     92     assert (
-     93         finetune_path is not None
-     94     ), "Found load_finetuned is True, but finetune_path is None."
----> 95     self.load_checkpoint(url_or_filename=finetune_path)
-     96 else:
-     97     # load pre-trained weights
-     98     pretrain_path = cfg.get("pretrained", None)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:37, in BaseModel.load_checkpoint(self, url_or_filename)
-     30 """
-     31 Load from a finetuned checkpoint.
-     32
-     33 This should expect no mismatch in the model keys and the checkpoint keys.
-     34 """
-     36 if is_url(url_or_filename):
----> 37     cached_file = download_cached_file(
-     38         url_or_filename, check_hash=False, progress=True
-     39     )
-     40     checkpoint = torch.load(cached_file, map_location="cpu")
-     41 elif os.path.isfile(url_or_filename):
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/common/dist_utils.py:132, in download_cached_file(url, check_hash, progress)
-    129     return cached_file
-    131 if is_main_process():
---> 132     timm_hub.download_cached_file(url, check_hash, progress)
-    134 if is_dist_avail_and_initialized():
-    135     dist.barrier()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/timm/models/hub.py:51, in download_cached_file(url, check_hash, progress)
-     49         r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
-     50         hash_prefix = r.group(1) if r else None
----> 51     download_url_to_file(url, cached_file, hash_prefix, progress=progress)
-     52 return cached_file
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/torch/hub.py:636, in download_url_to_file(url, dst, hash_prefix, progress)
-    634 if len(buffer) == 0:
-    635     break
---> 636 f.write(buffer)
-    637 if hash_prefix is not None:
-    638     sha256.update(buffer)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/tempfile.py:478, in _TemporaryFileWrapper.__getattr__.<locals>.func_wrapper(*args, **kwargs)
-    476 @_functools.wraps(func)
-    477 def func_wrapper(*args, **kwargs):
---> 478     return func(*args, **kwargs)
-
-OSError: [Errno 28] No space left on device
-
-
 Or you can specify the analysis type as summary_and_questions, then both caption creation and question answers will be generated for each image. In this case, you can choose a base or a large model_type.
-
-[22]:
+
+[ ]:
 
 
 image_summary_vqa_detector = ammico.SummaryDetector(image_dict, analysis_type="summary_and_questions",
@@ -16352,1497 +586,6 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0.00/1.35G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- 0%|          | 0.00/1.35G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0.00/1.35G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 8.78M/1.35G [00:00<00:15, 92.1MB/s]
- 
-- </pre> -
 -
-- 1%|          | 8.78M/1.35G [00:00<00:15, 92.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 8.78M/1.35G [00:00<00:15, 92.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 34.1M/1.35G [00:00<00:07, 194MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 34.1M/1.35G [00:00<00:07, 194MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 34.1M/1.35G [00:00<00:07, 194MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 58.3M/1.35G [00:00<00:06, 221MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 58.3M/1.35G [00:00<00:06, 221MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 58.3M/1.35G [00:00<00:06, 221MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▌         | 82.8M/1.35G [00:00<00:05, 236MB/s]
- 
-- </pre> -
 -
-- 6%|▌         | 82.8M/1.35G [00:00<00:05, 236MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▌         | 82.8M/1.35G [00:00<00:05, 236MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 109M/1.35G [00:00<00:05, 250MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 109M/1.35G [00:00<00:05, 250MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 109M/1.35G [00:00<00:05, 250MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 10%|▉         | 137M/1.35G [00:00<00:04, 264MB/s]
- 
-- </pre> -
 -
-- 10%|▉         | 137M/1.35G [00:00<00:04, 264MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-10%|▉         | 137M/1.35G [00:00<00:04, 264MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 12%|█▏        | 162M/1.35G [00:00<00:05, 253MB/s]
- 
-- </pre> -
 -
-- 12%|█▏        | 162M/1.35G [00:00<00:05, 253MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-12%|█▏        | 162M/1.35G [00:00<00:05, 253MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 14%|█▎        | 186M/1.35G [00:00<00:05, 246MB/s]
- 
-- </pre> -
 -
-- 14%|█▎        | 186M/1.35G [00:00<00:05, 246MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-14%|█▎        | 186M/1.35G [00:00<00:05, 246MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 15%|█▌        | 212M/1.35G [00:00<00:04, 252MB/s]
- 
-- </pre> -
 -
-- 15%|█▌        | 212M/1.35G [00:00<00:04, 252MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-15%|█▌        | 212M/1.35G [00:00<00:04, 252MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 236M/1.35G [00:01<00:04, 250MB/s]
- 
-- </pre> -
 -
-- 17%|█▋        | 236M/1.35G [00:01<00:04, 250MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 236M/1.35G [00:01<00:04, 250MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 19%|█▉        | 263M/1.35G [00:01<00:04, 261MB/s]
- 
-- </pre> -
 -
-- 19%|█▉        | 263M/1.35G [00:01<00:04, 261MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-19%|█▉        | 263M/1.35G [00:01<00:04, 261MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 21%|██        | 290M/1.35G [00:01<00:04, 267MB/s]
- 
-- </pre> -
 -
-- 21%|██        | 290M/1.35G [00:01<00:04, 267MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-21%|██        | 290M/1.35G [00:01<00:04, 267MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 23%|██▎       | 317M/1.35G [00:01<00:04, 272MB/s]
- 
-- </pre> -
 -
-- 23%|██▎       | 317M/1.35G [00:01<00:04, 272MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-23%|██▎       | 317M/1.35G [00:01<00:04, 272MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 25%|██▍       | 344M/1.35G [00:01<00:03, 275MB/s]
- 
-- </pre> -
 -
-- 25%|██▍       | 344M/1.35G [00:01<00:03, 275MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-25%|██▍       | 344M/1.35G [00:01<00:03, 275MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 27%|██▋       | 370M/1.35G [00:01<00:03, 267MB/s]
- 
-- </pre> -
 -
-- 27%|██▋       | 370M/1.35G [00:01<00:03, 267MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-27%|██▋       | 370M/1.35G [00:01<00:03, 267MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 29%|██▉       | 397M/1.35G [00:01<00:03, 272MB/s]
- 
-- </pre> -
 -
-- 29%|██▉       | 397M/1.35G [00:01<00:03, 272MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-29%|██▉       | 397M/1.35G [00:01<00:03, 272MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 31%|███       | 425M/1.35G [00:01<00:03, 277MB/s]
- 
-- </pre> -
 -
-- 31%|███       | 425M/1.35G [00:01<00:03, 277MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-31%|███       | 425M/1.35G [00:01<00:03, 277MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 453M/1.35G [00:01<00:03, 281MB/s]
- 
-- </pre> -
 -
-- 33%|███▎      | 453M/1.35G [00:01<00:03, 281MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 453M/1.35G [00:01<00:03, 281MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 35%|███▍      | 479M/1.35G [00:01<00:03, 278MB/s]
- 
-- </pre> -
 -
-- 35%|███▍      | 479M/1.35G [00:01<00:03, 278MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-35%|███▍      | 479M/1.35G [00:01<00:03, 278MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 37%|███▋      | 506M/1.35G [00:02<00:03, 265MB/s]
- 
-- </pre> -
 -
-- 37%|███▋      | 506M/1.35G [00:02<00:03, 265MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-37%|███▋      | 506M/1.35G [00:02<00:03, 265MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 39%|███▊      | 533M/1.35G [00:02<00:03, 269MB/s]
- 
-- </pre> -
 -
-- 39%|███▊      | 533M/1.35G [00:02<00:03, 269MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-39%|███▊      | 533M/1.35G [00:02<00:03, 269MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 40%|████      | 558M/1.35G [00:02<00:03, 268MB/s]
- 
-- </pre> -
 -
-- 40%|████      | 558M/1.35G [00:02<00:03, 268MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-40%|████      | 558M/1.35G [00:02<00:03, 268MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 42%|████▏     | 584M/1.35G [00:02<00:03, 269MB/s]
- 
-- </pre> -
 -
-- 42%|████▏     | 584M/1.35G [00:02<00:03, 269MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-42%|████▏     | 584M/1.35G [00:02<00:03, 269MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▍     | 610M/1.35G [00:02<00:03, 267MB/s]
- 
-- </pre> -
 -
-- 44%|████▍     | 610M/1.35G [00:02<00:03, 267MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▍     | 610M/1.35G [00:02<00:03, 267MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▌     | 635M/1.35G [00:02<00:03, 260MB/s]
- 
-- </pre> -
 -
-- 46%|████▌     | 635M/1.35G [00:02<00:03, 260MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▌     | 635M/1.35G [00:02<00:03, 260MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 48%|████▊     | 660M/1.35G [00:04<00:14, 52.5MB/s]
- 
-- </pre> -
 -
-- 48%|████▊     | 660M/1.35G [00:04<00:14, 52.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-48%|████▊     | 660M/1.35G [00:04<00:14, 52.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 49%|████▉     | 683M/1.35G [00:04<00:10, 66.7MB/s]
- 
-- </pre> -
 -
-- 49%|████▉     | 683M/1.35G [00:04<00:10, 66.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-49%|████▉     | 683M/1.35G [00:04<00:10, 66.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 51%|█████▏    | 708M/1.35G [00:04<00:08, 86.8MB/s]
- 
-- </pre> -
 -
-- 51%|█████▏    | 708M/1.35G [00:04<00:08, 86.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-51%|█████▏    | 708M/1.35G [00:04<00:08, 86.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 53%|█████▎    | 736M/1.35G [00:04<00:05, 113MB/s]
- 
-- </pre> -
 -
-- 53%|█████▎    | 736M/1.35G [00:04<00:05, 113MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-53%|█████▎    | 736M/1.35G [00:04<00:05, 113MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 55%|█████▌    | 763M/1.35G [00:04<00:04, 137MB/s]
- 
-- </pre> -
 -
-- 55%|█████▌    | 763M/1.35G [00:04<00:04, 137MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-55%|█████▌    | 763M/1.35G [00:04<00:04, 137MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 57%|█████▋    | 787M/1.35G [00:04<00:03, 158MB/s]
- 
-- </pre> -
 -
-- 57%|█████▋    | 787M/1.35G [00:04<00:03, 158MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-57%|█████▋    | 787M/1.35G [00:04<00:03, 158MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 59%|█████▉    | 811M/1.35G [00:04<00:03, 175MB/s]
- 
-- </pre> -
 -
-- 59%|█████▉    | 811M/1.35G [00:04<00:03, 175MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-59%|█████▉    | 811M/1.35G [00:04<00:03, 175MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 61%|██████    | 838M/1.35G [00:04<00:02, 200MB/s]
- 
-- </pre> -
 -
-- 61%|██████    | 838M/1.35G [00:04<00:02, 200MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-61%|██████    | 838M/1.35G [00:04<00:02, 200MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 63%|██████▎   | 866M/1.35G [00:04<00:02, 221MB/s]
- 
-- </pre> -
 -
-- 63%|██████▎   | 866M/1.35G [00:04<00:02, 221MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-63%|██████▎   | 866M/1.35G [00:04<00:02, 221MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 65%|██████▍   | 893M/1.35G [00:04<00:02, 236MB/s]
- 
-- </pre> -
 -
-- 65%|██████▍   | 893M/1.35G [00:04<00:02, 236MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-65%|██████▍   | 893M/1.35G [00:04<00:02, 236MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 67%|██████▋   | 919M/1.35G [00:05<00:01, 248MB/s]
- 
-- </pre> -
 -
-- 67%|██████▋   | 919M/1.35G [00:05<00:01, 248MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-67%|██████▋   | 919M/1.35G [00:05<00:01, 248MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 69%|██████▊   | 946M/1.35G [00:05<00:01, 252MB/s]
- 
-- </pre> -
 -
-- 69%|██████▊   | 946M/1.35G [00:05<00:01, 252MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-69%|██████▊   | 946M/1.35G [00:05<00:01, 252MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 70%|███████   | 971M/1.35G [00:05<00:04, 102MB/s]
- 
-- </pre> -
 -
-- 70%|███████   | 971M/1.35G [00:05<00:04, 102MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-70%|███████   | 971M/1.35G [00:05<00:04, 102MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 72%|███████▏  | 999M/1.35G [00:05<00:03, 127MB/s]
- 
-- </pre> -
 -
-- 72%|███████▏  | 999M/1.35G [00:05<00:03, 127MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-72%|███████▏  | 999M/1.35G [00:05<00:03, 127MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 74%|███████▍  | 1.00G/1.35G [00:05<00:02, 156MB/s]
- 
-- </pre> -
 -
-- 74%|███████▍  | 1.00G/1.35G [00:05<00:02, 156MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-74%|███████▍  | 1.00G/1.35G [00:05<00:02, 156MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 76%|███████▌  | 1.03G/1.35G [00:06<00:01, 173MB/s]
- 
-- </pre> -
 -
-- 76%|███████▌  | 1.03G/1.35G [00:06<00:01, 173MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-76%|███████▌  | 1.03G/1.35G [00:06<00:01, 173MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 78%|███████▊  | 1.05G/1.35G [00:06<00:01, 188MB/s]
- 
-- </pre> -
 -
-- 78%|███████▊  | 1.05G/1.35G [00:06<00:01, 188MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-78%|███████▊  | 1.05G/1.35G [00:06<00:01, 188MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 80%|███████▉  | 1.07G/1.35G [00:06<00:01, 202MB/s]
- 
-- </pre> -
 -
-- 80%|███████▉  | 1.07G/1.35G [00:06<00:01, 202MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-80%|███████▉  | 1.07G/1.35G [00:06<00:01, 202MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 81%|████████▏ | 1.10G/1.35G [00:06<00:03, 85.1MB/s]
- 
-- </pre> -
 -
-- 81%|████████▏ | 1.10G/1.35G [00:06<00:03, 85.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-81%|████████▏ | 1.10G/1.35G [00:06<00:03, 85.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 83%|████████▎ | 1.12G/1.35G [00:07<00:02, 106MB/s]
- 
-- </pre> -
 -
-- 83%|████████▎ | 1.12G/1.35G [00:07<00:02, 106MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-83%|████████▎ | 1.12G/1.35G [00:07<00:02, 106MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 85%|████████▍ | 1.14G/1.35G [00:07<00:01, 127MB/s]
- 
-- </pre> -
 -
-- 85%|████████▍ | 1.14G/1.35G [00:07<00:01, 127MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-85%|████████▍ | 1.14G/1.35G [00:07<00:01, 127MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 87%|████████▋ | 1.17G/1.35G [00:07<00:01, 149MB/s]
- 
-- </pre> -
 -
-- 87%|████████▋ | 1.17G/1.35G [00:07<00:01, 149MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-87%|████████▋ | 1.17G/1.35G [00:07<00:01, 149MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 88%|████████▊ | 1.19G/1.35G [00:08<00:02, 71.4MB/s]
- 
-- </pre> -
 -
-- 88%|████████▊ | 1.19G/1.35G [00:08<00:02, 71.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-88%|████████▊ | 1.19G/1.35G [00:08<00:02, 71.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 90%|████████▉ | 1.21G/1.35G [00:08<00:02, 56.1MB/s]
- 
-- </pre> -
 -
-- 90%|████████▉ | 1.21G/1.35G [00:08<00:02, 56.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-90%|████████▉ | 1.21G/1.35G [00:08<00:02, 56.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 91%|█████████ | 1.23G/1.35G [00:09<00:02, 51.5MB/s]
- 
-- </pre> -
 -
-- 91%|█████████ | 1.23G/1.35G [00:09<00:02, 51.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-91%|█████████ | 1.23G/1.35G [00:09<00:02, 51.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 91%|█████████▏| 1.23G/1.35G [00:09<00:00, 144MB/s]
- 
-- </pre> -
 -
-- 91%|█████████▏| 1.23G/1.35G [00:09<00:00, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-91%|█████████▏| 1.23G/1.35G [00:09<00:00, 144MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-OSError                                   Traceback (most recent call last)
-Cell In[22], line 1
-----> 1 image_summary_vqa_detector = ammico.SummaryDetector(image_dict, analysis_type="summary_and_questions", 
-      2                                                     model_type="base")
-      3 for num, key in tqdm(enumerate(image_dict.keys()),total=len(image_dict)):
-      4     image_dict[key] = image_summary_vqa_detector.analyse_image(subdict=image_dict[key],
-      5                                                                analysis_type="summary_and_questions",
-      6                                                                list_of_questions = list_of_questions)
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:141, in SummaryDetector.__init__(self, subdict, model_type, analysis_type, list_of_questions, summary_model, summary_vis_processors, summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors, summary_vqa_model_new, summary_vqa_vis_processors_new, summary_vqa_txt_processors_new, device_type)
-    127     self.summary_vis_processors = summary_vis_processors
-    128 if (
-    129     model_type in self.allowed_model_types
-    130     and (summary_vqa_model is None)
-   (...)
-    135     )
-    136 ):
-    137     (
-    138         self.summary_vqa_model,
-    139         self.summary_vqa_vis_processors,
-    140         self.summary_vqa_txt_processors,
---> 141     ) = self.load_vqa_model()
-    142 else:
-    143     self.summary_vqa_model = summary_vqa_model
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:232, in SummaryDetector.load_vqa_model(self)
-    216 def load_vqa_model(self):
-    217     """
-    218     Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
-    219
-   (...)
-    226
-    227     """
-    228     (
-    229         summary_vqa_model,
-    230         summary_vqa_vis_processors,
-    231         summary_vqa_txt_processors,
---> 232     ) = load_model_and_preprocess(
-    233         name="blip_vqa",
-    234         model_type="vqav2",
-    235         is_eval=True,
-    236         device=self.summary_device,
-    237     )
-    238     return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195, in load_model_and_preprocess(name, model_type, is_eval, device)
-    192 model_cls = registry.get_model_class(name)
-    194 # load model
---> 195 model = model_cls.from_pretrained(model_type=model_type)
-    197 if is_eval:
-    198     model.eval()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70, in BaseModel.from_pretrained(cls, model_type)
-     60 """
-     61 Build a pretrained model from default configuration file, specified by model_type.
-     62
-   (...)
-     67     - model (nn.Module): pretrained or finetuned model, depending on the configuration.
-     68 """
-     69 model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
----> 70 model = cls.from_config(model_cfg)
-     72 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_vqa.py:373, in BlipVQA.from_config(cls, cfg)
-    364 max_txt_len = cfg.get("max_txt_len", 35)
-    366 model = cls(
-    367     image_encoder=image_encoder,
-    368     text_encoder=text_encoder,
-    369     text_decoder=text_decoder,
-    370     max_txt_len=max_txt_len,
-    371 )
---> 373 model.load_checkpoint_from_config(cfg)
-    375 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:95, in BaseModel.load_checkpoint_from_config(self, cfg, **kwargs)
-     91     finetune_path = cfg.get("finetuned", None)
-     92     assert (
-     93         finetune_path is not None
-     94     ), "Found load_finetuned is True, but finetune_path is None."
----> 95     self.load_checkpoint(url_or_filename=finetune_path)
-     96 else:
-     97     # load pre-trained weights
-     98     pretrain_path = cfg.get("pretrained", None)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:37, in BaseModel.load_checkpoint(self, url_or_filename)
-     30 """
-     31 Load from a finetuned checkpoint.
-     32
-     33 This should expect no mismatch in the model keys and the checkpoint keys.
-     34 """
-     36 if is_url(url_or_filename):
----> 37     cached_file = download_cached_file(
-     38         url_or_filename, check_hash=False, progress=True
-     39     )
-     40     checkpoint = torch.load(cached_file, map_location="cpu")
-     41 elif os.path.isfile(url_or_filename):
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/common/dist_utils.py:132, in download_cached_file(url, check_hash, progress)
-    129     return cached_file
-    131 if is_main_process():
---> 132     timm_hub.download_cached_file(url, check_hash, progress)
-    134 if is_dist_avail_and_initialized():
-    135     dist.barrier()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/timm/models/hub.py:51, in download_cached_file(url, check_hash, progress)
-     49         r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
-     50         hash_prefix = r.group(1) if r else None
----> 51     download_url_to_file(url, cached_file, hash_prefix, progress=progress)
-     52 return cached_file
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/torch/hub.py:636, in download_url_to_file(url, dst, hash_prefix, progress)
-    634 if len(buffer) == 0:
-    635     break
---> 636 f.write(buffer)
-    637 if hash_prefix is not None:
-    638     sha256.update(buffer)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/tempfile.py:478, in _TemporaryFileWrapper.__getattr__.<locals>.func_wrapper(*args, **kwargs)
-    476 @_functools.wraps(func)
-    477 def func_wrapper(*args, **kwargs):
---> 478     return func(*args, **kwargs)
-
-OSError: [Errno 28] No space left on device
-
-
 The output is given as a dictionary with the following keys and data types:
 
 
@@ -17869,8 +612,8 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 BLIP2 models
 This is very heavy models. They requare approx 60GB of RAM and they can use more than 20GB GPUs memory.
-
-[23]:
+
+[ ]:
 
 
 obj = ammico.SummaryDetector(subdict=image_dict, analysis_type = "summary_and_questions", model_type = "blip2_t5_caption_coco_flant5xl")
@@ -17891,2606 +634,8 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0.00/1.89G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- 0%|          | 0.00/1.89G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0.00/1.89G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 4.01M/1.89G [00:00<01:16, 26.3MB/s]
- 
-- </pre> -
 -
-- 0%|          | 4.01M/1.89G [00:00<01:16, 26.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 4.01M/1.89G [00:00<01:16, 26.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 11.7M/1.89G [00:00<00:42, 47.7MB/s]
- 
-- </pre> -
 -
-- 1%|          | 11.7M/1.89G [00:00<00:42, 47.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 11.7M/1.89G [00:00<00:42, 47.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 16.6M/1.89G [00:00<00:48, 41.6MB/s]
- 
-- </pre> -
 -
-- 1%|          | 16.6M/1.89G [00:00<00:48, 41.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 16.6M/1.89G [00:00<00:48, 41.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|          | 24.0M/1.89G [00:00<00:40, 48.9MB/s]
- 
-- </pre> -
 -
-- 1%|          | 24.0M/1.89G [00:00<00:40, 48.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|          | 24.0M/1.89G [00:00<00:40, 48.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 32.0M/1.89G [00:00<00:37, 53.5MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 32.0M/1.89G [00:00<00:37, 53.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 32.0M/1.89G [00:00<00:37, 53.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 40.0M/1.89G [00:00<00:32, 61.3MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 40.0M/1.89G [00:00<00:32, 61.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 40.0M/1.89G [00:00<00:32, 61.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 48.0M/1.89G [00:00<00:30, 65.8MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 48.0M/1.89G [00:00<00:30, 65.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 48.0M/1.89G [00:00<00:30, 65.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 56.0M/1.89G [00:01<00:28, 69.3MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 56.0M/1.89G [00:01<00:28, 69.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 56.0M/1.89G [00:01<00:28, 69.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 64.6M/1.89G [00:01<00:26, 75.3MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 64.6M/1.89G [00:01<00:26, 75.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 64.6M/1.89G [00:01<00:26, 75.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▎         | 72.0M/1.89G [00:01<00:38, 50.7MB/s]
- 
-- </pre> -
 -
-- 4%|▎         | 72.0M/1.89G [00:01<00:38, 50.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▎         | 72.0M/1.89G [00:01<00:38, 50.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 80.0M/1.89G [00:01<00:33, 57.4MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 80.0M/1.89G [00:01<00:33, 57.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 80.0M/1.89G [00:01<00:33, 57.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 5%|▍         | 88.0M/1.89G [00:01<00:30, 63.2MB/s]
- 
-- </pre> -
 -
-- 5%|▍         | 88.0M/1.89G [00:01<00:30, 63.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-5%|▍         | 88.0M/1.89G [00:01<00:30, 63.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 5%|▌         | 101M/1.89G [00:01<00:23, 81.2MB/s]
- 
-- </pre> -
 -
-- 5%|▌         | 101M/1.89G [00:01<00:23, 81.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-5%|▌         | 101M/1.89G [00:01<00:23, 81.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▌         | 112M/1.89G [00:01<00:22, 85.3MB/s]
- 
-- </pre> -
 -
-- 6%|▌         | 112M/1.89G [00:01<00:22, 85.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▌         | 112M/1.89G [00:01<00:22, 85.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▋         | 122M/1.89G [00:01<00:20, 91.4MB/s]
- 
-- </pre> -
 -
-- 6%|▋         | 122M/1.89G [00:01<00:20, 91.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▋         | 122M/1.89G [00:01<00:20, 91.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 7%|▋         | 132M/1.89G [00:02<00:20, 92.7MB/s]
- 
-- </pre> -
 -
-- 7%|▋         | 132M/1.89G [00:02<00:20, 92.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-7%|▋         | 132M/1.89G [00:02<00:20, 92.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 7%|▋         | 142M/1.89G [00:02<00:19, 98.4MB/s]
- 
-- </pre> -
 -
-- 7%|▋         | 142M/1.89G [00:02<00:19, 98.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-7%|▋         | 142M/1.89G [00:02<00:19, 98.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 156M/1.89G [00:02<00:16, 110MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 156M/1.89G [00:02<00:16, 110MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 156M/1.89G [00:02<00:16, 110MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 9%|▊         | 168M/1.89G [00:02<00:15, 116MB/s]
- 
-- </pre> -
 -
-- 9%|▊         | 168M/1.89G [00:02<00:15, 116MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-9%|▊         | 168M/1.89G [00:02<00:15, 116MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 10%|▉         | 184M/1.89G [00:02<00:14, 125MB/s]
- 
-- </pre> -
 -
-- 10%|▉         | 184M/1.89G [00:02<00:14, 125MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-10%|▉         | 184M/1.89G [00:02<00:14, 125MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 10%|█         | 200M/1.89G [00:02<00:13, 132MB/s]
- 
-- </pre> -
 -
-- 10%|█         | 200M/1.89G [00:02<00:13, 132MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-10%|█         | 200M/1.89G [00:02<00:13, 132MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 11%|█         | 216M/1.89G [00:02<00:15, 117MB/s]
- 
-- </pre> -
 -
-- 11%|█         | 216M/1.89G [00:02<00:15, 117MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-11%|█         | 216M/1.89G [00:02<00:15, 117MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 12%|█▏        | 240M/1.89G [00:02<00:11, 152MB/s]
- 
-- </pre> -
 -
-- 12%|█▏        | 240M/1.89G [00:02<00:11, 152MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-12%|█▏        | 240M/1.89G [00:02<00:11, 152MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 13%|█▎        | 256M/1.89G [00:02<00:12, 142MB/s]
- 
-- </pre> -
 -
-- 13%|█▎        | 256M/1.89G [00:02<00:12, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-13%|█▎        | 256M/1.89G [00:02<00:12, 142MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 14%|█▍        | 274M/1.89G [00:03<00:11, 154MB/s]
- 
-- </pre> -
 -
-- 14%|█▍        | 274M/1.89G [00:03<00:11, 154MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-14%|█▍        | 274M/1.89G [00:03<00:11, 154MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 15%|█▍        | 289M/1.89G [00:03<00:11, 155MB/s]
- 
-- </pre> -
 -
-- 15%|█▍        | 289M/1.89G [00:03<00:11, 155MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-15%|█▍        | 289M/1.89G [00:03<00:11, 155MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 16%|█▌        | 310M/1.89G [00:03<00:09, 173MB/s]
- 
-- </pre> -
 -
-- 16%|█▌        | 310M/1.89G [00:03<00:09, 173MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-16%|█▌        | 310M/1.89G [00:03<00:09, 173MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 327M/1.89G [00:03<00:12, 133MB/s]
- 
-- </pre> -
 -
-- 17%|█▋        | 327M/1.89G [00:03<00:12, 133MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 327M/1.89G [00:03<00:12, 133MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 18%|█▊        | 348M/1.89G [00:03<00:10, 153MB/s]
- 
-- </pre> -
 -
-- 18%|█▊        | 348M/1.89G [00:03<00:10, 153MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-18%|█▊        | 348M/1.89G [00:03<00:10, 153MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 19%|█▉        | 372M/1.89G [00:03<00:09, 178MB/s]
- 
-- </pre> -
 -
-- 19%|█▉        | 372M/1.89G [00:03<00:09, 178MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-19%|█▉        | 372M/1.89G [00:03<00:09, 178MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 21%|██        | 396M/1.89G [00:03<00:08, 198MB/s]
- 
-- </pre> -
 -
-- 21%|██        | 396M/1.89G [00:03<00:08, 198MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-21%|██        | 396M/1.89G [00:03<00:08, 198MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 22%|██▏       | 417M/1.89G [00:03<00:07, 203MB/s]
- 
-- </pre> -
 -
-- 22%|██▏       | 417M/1.89G [00:03<00:07, 203MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-22%|██▏       | 417M/1.89G [00:03<00:07, 203MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 23%|██▎       | 440M/1.89G [00:03<00:07, 203MB/s]
- 
-- </pre> -
 -
-- 23%|██▎       | 440M/1.89G [00:03<00:07, 203MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-23%|██▎       | 440M/1.89G [00:03<00:07, 203MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 24%|██▍       | 460M/1.89G [00:04<00:07, 204MB/s]
- 
-- </pre> -
 -
-- 24%|██▍       | 460M/1.89G [00:04<00:07, 204MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-24%|██▍       | 460M/1.89G [00:04<00:07, 204MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 25%|██▍       | 480M/1.89G [00:04<00:07, 201MB/s]
- 
-- </pre> -
 -
-- 25%|██▍       | 480M/1.89G [00:04<00:07, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-25%|██▍       | 480M/1.89G [00:04<00:07, 201MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 26%|██▌       | 500M/1.89G [00:04<00:10, 143MB/s]
- 
-- </pre> -
 -
-- 26%|██▌       | 500M/1.89G [00:04<00:10, 143MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-26%|██▌       | 500M/1.89G [00:04<00:10, 143MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 27%|██▋       | 516M/1.89G [00:04<00:10, 140MB/s]
- 
-- </pre> -
 -
-- 27%|██▋       | 516M/1.89G [00:04<00:10, 140MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-27%|██▋       | 516M/1.89G [00:04<00:10, 140MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 28%|██▊       | 536M/1.89G [00:04<00:09, 153MB/s]
- 
-- </pre> -
 -
-- 28%|██▊       | 536M/1.89G [00:04<00:09, 153MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-28%|██▊       | 536M/1.89G [00:04<00:09, 153MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 29%|██▊       | 555M/1.89G [00:04<00:08, 165MB/s]
- 
-- </pre> -
 -
-- 29%|██▊       | 555M/1.89G [00:04<00:08, 165MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-29%|██▊       | 555M/1.89G [00:04<00:08, 165MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 30%|███       | 580M/1.89G [00:04<00:07, 190MB/s]
- 
-- </pre> -
 -
-- 30%|███       | 580M/1.89G [00:04<00:07, 190MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-30%|███       | 580M/1.89G [00:04<00:07, 190MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 31%|███       | 602M/1.89G [00:04<00:07, 199MB/s]
- 
-- </pre> -
 -
-- 31%|███       | 602M/1.89G [00:04<00:07, 199MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-31%|███       | 602M/1.89G [00:04<00:07, 199MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 32%|███▏      | 622M/1.89G [00:05<00:06, 201MB/s]
- 
-- </pre> -
 -
-- 32%|███▏      | 622M/1.89G [00:05<00:06, 201MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-32%|███▏      | 622M/1.89G [00:05<00:06, 201MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 646M/1.89G [00:05<00:06, 215MB/s]
- 
-- </pre> -
 -
-- 33%|███▎      | 646M/1.89G [00:05<00:06, 215MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 646M/1.89G [00:05<00:06, 215MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 35%|███▍      | 669M/1.89G [00:05<00:05, 223MB/s]
- 
-- </pre> -
 -
-- 35%|███▍      | 669M/1.89G [00:05<00:05, 223MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-35%|███▍      | 669M/1.89G [00:05<00:05, 223MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 36%|███▌      | 690M/1.89G [00:06<00:18, 71.6MB/s]
- 
-- </pre> -
 -
-- 36%|███▌      | 690M/1.89G [00:06<00:18, 71.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-36%|███▌      | 690M/1.89G [00:06<00:18, 71.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 37%|███▋      | 709M/1.89G [00:06<00:14, 86.5MB/s]
- 
-- </pre> -
 -
-- 37%|███▋      | 709M/1.89G [00:06<00:14, 86.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-37%|███▋      | 709M/1.89G [00:06<00:14, 86.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 38%|███▊      | 728M/1.89G [00:06<00:12, 103MB/s]
- 
-- </pre> -
 -
-- 38%|███▊      | 728M/1.89G [00:06<00:12, 103MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-38%|███▊      | 728M/1.89G [00:06<00:12, 103MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 39%|███▊      | 746M/1.89G [00:06<00:10, 117MB/s]
- 
-- </pre> -
 -
-- 39%|███▊      | 746M/1.89G [00:06<00:10, 117MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-39%|███▊      | 746M/1.89G [00:06<00:10, 117MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 40%|███▉      | 764M/1.89G [00:06<00:09, 128MB/s]
- 
-- </pre> -
 -
-- 40%|███▉      | 764M/1.89G [00:06<00:09, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-40%|███▉      | 764M/1.89G [00:06<00:09, 128MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 41%|████      | 784M/1.89G [00:06<00:08, 145MB/s]
- 
-- </pre> -
 -
-- 41%|████      | 784M/1.89G [00:06<00:08, 145MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-41%|████      | 784M/1.89G [00:06<00:08, 145MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 42%|████▏     | 803M/1.89G [00:06<00:07, 158MB/s]
- 
-- </pre> -
 -
-- 42%|████▏     | 803M/1.89G [00:06<00:07, 158MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-42%|████▏     | 803M/1.89G [00:06<00:07, 158MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 43%|████▎     | 821M/1.89G [00:08<00:38, 30.1MB/s]
- 
-- </pre> -
 -
-- 43%|████▎     | 821M/1.89G [00:08<00:38, 30.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-43%|████▎     | 821M/1.89G [00:08<00:38, 30.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 43%|████▎     | 834M/1.89G [00:08<00:33, 34.4MB/s]
- 
-- </pre> -
 -
-- 43%|████▎     | 834M/1.89G [00:08<00:33, 34.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-43%|████▎     | 834M/1.89G [00:08<00:33, 34.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▍     | 845M/1.89G [00:08<00:29, 39.0MB/s]
- 
-- </pre> -
 -
-- 44%|████▍     | 845M/1.89G [00:08<00:29, 39.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▍     | 845M/1.89G [00:08<00:29, 39.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▍     | 855M/1.89G [00:09<00:38, 29.2MB/s]
- 
-- </pre> -
 -
-- 44%|████▍     | 855M/1.89G [00:09<00:38, 29.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▍     | 855M/1.89G [00:09<00:38, 29.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 45%|████▍     | 862M/1.89G [00:09<00:34, 32.2MB/s]
- 
-- </pre> -
 -
-- 45%|████▍     | 862M/1.89G [00:09<00:34, 32.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-45%|████▍     | 862M/1.89G [00:09<00:34, 32.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 45%|████▌     | 869M/1.89G [00:09<00:31, 35.8MB/s]
- 
-- </pre> -
 -
-- 45%|████▌     | 869M/1.89G [00:09<00:31, 35.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-45%|████▌     | 869M/1.89G [00:09<00:31, 35.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 45%|████▌     | 876M/1.89G [00:10<00:28, 39.4MB/s]
- 
-- </pre> -
 -
-- 45%|████▌     | 876M/1.89G [00:10<00:28, 39.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-45%|████▌     | 876M/1.89G [00:10<00:28, 39.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▌     | 882M/1.89G [00:10<00:25, 43.3MB/s]
- 
-- </pre> -
 -
-- 46%|████▌     | 882M/1.89G [00:10<00:25, 43.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▌     | 882M/1.89G [00:10<00:25, 43.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▌     | 889M/1.89G [00:10<00:27, 39.9MB/s]
- 
-- </pre> -
 -
-- 46%|████▌     | 889M/1.89G [00:10<00:27, 39.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▌     | 889M/1.89G [00:10<00:27, 39.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▋     | 896M/1.89G [00:10<00:23, 46.0MB/s]
- 
-- </pre> -
 -
-- 46%|████▋     | 896M/1.89G [00:10<00:23, 46.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▋     | 896M/1.89G [00:10<00:23, 46.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 47%|████▋     | 905M/1.89G [00:10<00:19, 55.6MB/s]
- 
-- </pre> -
 -
-- 47%|████▋     | 905M/1.89G [00:10<00:19, 55.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-47%|████▋     | 905M/1.89G [00:10<00:19, 55.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 47%|████▋     | 912M/1.89G [00:10<00:23, 45.8MB/s]
- 
-- </pre> -
 -
-- 47%|████▋     | 912M/1.89G [00:10<00:23, 45.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-47%|████▋     | 912M/1.89G [00:10<00:23, 45.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 48%|████▊     | 920M/1.89G [00:10<00:20, 51.3MB/s]
- 
-- </pre> -
 -
-- 48%|████▊     | 920M/1.89G [00:10<00:20, 51.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-48%|████▊     | 920M/1.89G [00:10<00:20, 51.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 48%|████▊     | 928M/1.89G [00:11<00:18, 55.4MB/s]
- 
-- </pre> -
 -
-- 48%|████▊     | 928M/1.89G [00:11<00:18, 55.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-48%|████▊     | 928M/1.89G [00:11<00:18, 55.4MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 48%|████▊     | 936M/1.89G [00:11<00:17, 59.6MB/s]
- 
-- </pre> -
 -
-- 48%|████▊     | 936M/1.89G [00:11<00:17, 59.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-48%|████▊     | 936M/1.89G [00:11<00:17, 59.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 49%|████▉     | 944M/1.89G [00:11<00:17, 60.7MB/s]
- 
-- </pre> -
 -
-- 49%|████▉     | 944M/1.89G [00:11<00:17, 60.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-49%|████▉     | 944M/1.89G [00:11<00:17, 60.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 49%|████▉     | 952M/1.89G [00:11<00:16, 63.9MB/s]
- 
-- </pre> -
 -
-- 49%|████▉     | 952M/1.89G [00:11<00:16, 63.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-49%|████▉     | 952M/1.89G [00:11<00:16, 63.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|████▉     | 960M/1.89G [00:11<00:15, 66.7MB/s]
- 
-- </pre> -
 -
-- 50%|████▉     | 960M/1.89G [00:11<00:15, 66.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|████▉     | 960M/1.89G [00:11<00:15, 66.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 51%|█████     | 976M/1.89G [00:11<00:11, 90.0MB/s]
- 
-- </pre> -
 -
-- 51%|█████     | 976M/1.89G [00:11<00:11, 90.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-51%|█████     | 976M/1.89G [00:11<00:11, 90.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 51%|█████▏    | 992M/1.89G [00:11<00:11, 83.3MB/s]
- 
-- </pre> -
 -
-- 51%|█████▏    | 992M/1.89G [00:11<00:11, 83.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-51%|█████▏    | 992M/1.89G [00:11<00:11, 83.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 52%|█████▏    | 0.98G/1.89G [00:11<00:09, 102MB/s]
- 
-- </pre> -
 -
-- 52%|█████▏    | 0.98G/1.89G [00:11<00:09, 102MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-52%|█████▏    | 0.98G/1.89G [00:11<00:09, 102MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 53%|█████▎    | 0.99G/1.89G [00:12<00:10, 90.7MB/s]
- 
-- </pre> -
 -
-- 53%|█████▎    | 0.99G/1.89G [00:12<00:10, 90.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-53%|█████▎    | 0.99G/1.89G [00:12<00:10, 90.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 53%|█████▎    | 1.01G/1.89G [00:12<00:09, 97.1MB/s]
- 
-- </pre> -
 -
-- 53%|█████▎    | 1.01G/1.89G [00:12<00:09, 97.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-53%|█████▎    | 1.01G/1.89G [00:12<00:09, 97.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 54%|█████▍    | 1.02G/1.89G [00:12<00:08, 113MB/s]
- 
-- </pre> -
 -
-- 54%|█████▍    | 1.02G/1.89G [00:12<00:08, 113MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-54%|█████▍    | 1.02G/1.89G [00:12<00:08, 113MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 55%|█████▍    | 1.04G/1.89G [00:13<00:19, 47.6MB/s]
- 
-- </pre> -
 -
-- 55%|█████▍    | 1.04G/1.89G [00:13<00:19, 47.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-55%|█████▍    | 1.04G/1.89G [00:13<00:19, 47.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 56%|█████▌    | 1.05G/1.89G [00:13<00:14, 63.6MB/s]
- 
-- </pre> -
 -
-- 56%|█████▌    | 1.05G/1.89G [00:13<00:14, 63.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-56%|█████▌    | 1.05G/1.89G [00:13<00:14, 63.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 56%|█████▋    | 1.06G/1.89G [00:13<00:15, 56.1MB/s]
- 
-- </pre> -
 -
-- 56%|█████▋    | 1.06G/1.89G [00:13<00:15, 56.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-56%|█████▋    | 1.06G/1.89G [00:13<00:15, 56.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 57%|█████▋    | 1.08G/1.89G [00:13<00:15, 57.2MB/s]
- 
-- </pre> -
 -
-- 57%|█████▋    | 1.08G/1.89G [00:13<00:15, 57.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-57%|█████▋    | 1.08G/1.89G [00:13<00:15, 57.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 58%|█████▊    | 1.09G/1.89G [00:13<00:11, 72.9MB/s]
- 
-- </pre> -
 -
-- 58%|█████▊    | 1.09G/1.89G [00:13<00:11, 72.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-58%|█████▊    | 1.09G/1.89G [00:13<00:11, 72.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 59%|█████▉    | 1.11G/1.89G [00:13<00:09, 89.8MB/s]
- 
-- </pre> -
 -
-- 59%|█████▉    | 1.11G/1.89G [00:13<00:09, 89.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-59%|█████▉    | 1.11G/1.89G [00:13<00:09, 89.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 60%|█████▉    | 1.13G/1.89G [00:13<00:07, 103MB/s]
- 
-- </pre> -
 -
-- 60%|█████▉    | 1.13G/1.89G [00:13<00:07, 103MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-60%|█████▉    | 1.13G/1.89G [00:13<00:07, 103MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 60%|██████    | 1.14G/1.89G [00:14<00:06, 118MB/s]
- 
-- </pre> -
 -
-- 60%|██████    | 1.14G/1.89G [00:14<00:06, 118MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-60%|██████    | 1.14G/1.89G [00:14<00:06, 118MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 61%|██████    | 1.15G/1.89G [00:14<00:15, 49.8MB/s]
- 
-- </pre> -
 -
-- 61%|██████    | 1.15G/1.89G [00:14<00:15, 49.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-61%|██████    | 1.15G/1.89G [00:14<00:15, 49.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 1.17G/1.89G [00:14<00:13, 57.9MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 1.17G/1.89G [00:14<00:13, 57.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 1.17G/1.89G [00:14<00:13, 57.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 1.18G/1.89G [00:14<00:11, 65.6MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 1.18G/1.89G [00:14<00:11, 65.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 1.18G/1.89G [00:14<00:11, 65.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 63%|██████▎   | 1.19G/1.89G [00:15<00:10, 71.1MB/s]
- 
-- </pre> -
 -
-- 63%|██████▎   | 1.19G/1.89G [00:15<00:10, 71.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-63%|██████▎   | 1.19G/1.89G [00:15<00:10, 71.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 63%|██████▎   | 1.20G/1.89G [00:15<00:17, 42.1MB/s]
- 
-- </pre> -
 -
-- 63%|██████▎   | 1.20G/1.89G [00:15<00:17, 42.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-63%|██████▎   | 1.20G/1.89G [00:15<00:17, 42.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 64%|██████▍   | 1.21G/1.89G [00:15<00:13, 54.3MB/s]
- 
-- </pre> -
 -
-- 64%|██████▍   | 1.21G/1.89G [00:15<00:13, 54.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-64%|██████▍   | 1.21G/1.89G [00:15<00:13, 54.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 65%|██████▍   | 1.22G/1.89G [00:16<00:19, 37.3MB/s]
- 
-- </pre> -
 -
-- 65%|██████▍   | 1.22G/1.89G [00:16<00:19, 37.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-65%|██████▍   | 1.22G/1.89G [00:16<00:19, 37.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 65%|██████▍   | 1.23G/1.89G [00:16<00:25, 27.8MB/s]
- 
-- </pre> -
 -
-- 65%|██████▍   | 1.23G/1.89G [00:16<00:25, 27.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-65%|██████▍   | 1.23G/1.89G [00:16<00:25, 27.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 65%|██████▌   | 1.23G/1.89G [00:16<00:08, 78.4MB/s]
- 
-- </pre> -
 -
-- 65%|██████▌   | 1.23G/1.89G [00:16<00:08, 78.4MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-65%|██████▌   | 1.23G/1.89G [00:16<00:08, 78.4MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-OSError                                   Traceback (most recent call last)
-Cell In[23], line 1
-----> 1 obj = ammico.SummaryDetector(subdict=image_dict, analysis_type = "summary_and_questions", model_type = "blip2_t5_caption_coco_flant5xl")
-      2 # list of the new models that can be used:
-      3 # "blip2_t5_pretrain_flant5xxl",
-      4 # "blip2_t5_pretrain_flant5xl",
-   (...)
-     14
-     15 #also you can perform all calculation on cpu if you set device_type= "cpu" or gpu if you set device_type= "cuda"
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:156, in SummaryDetector.__init__(self, subdict, model_type, analysis_type, list_of_questions, summary_model, summary_vis_processors, summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors, summary_vqa_model_new, summary_vqa_vis_processors_new, summary_vqa_txt_processors_new, device_type)
-    145     self.summary_vqa_txt_processors = summary_vqa_txt_processors
-    146 if (
-    147     model_type in self.allowed_new_model_types
-    148     and (summary_vqa_model_new is None)
-    149     and (summary_vqa_vis_processors_new is None)
-    150     and (summary_vqa_txt_processors_new is None)
-    151 ):
-    152     (
-    153         self.summary_vqa_model_new,
-    154         self.summary_vqa_vis_processors_new,
-    155         self.summary_vqa_txt_processors_new,
---> 156     ) = self.load_new_model(model_type=model_type)
-    157 else:
-    158     self.summary_vqa_model_new = summary_vqa_model_new
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:479, in SummaryDetector.load_new_model(self, model_type)
-    455 """
-    456 Load new BLIP2 models.
-    457
-   (...)
-    464     txt_processors (dict): preprocessors for text inputs.
-    465 """
-    466 select_model = {
-    467     "blip2_t5_pretrain_flant5xxl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl,
-    468     "blip2_t5_pretrain_flant5xl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xl,
-   (...)
-    473     "blip2_opt_caption_coco_opt6.7b": SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b,
-    474 }
-    475 (
-    476     summary_vqa_model,
-    477     summary_vqa_vis_processors,
-    478     summary_vqa_txt_processors,
---> 479 ) = select_model[model_type](self)
-    480 return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
-
-File ~/work/AMMICO/AMMICO/ammico/summary.py:543, in SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl(self)
-    528 def load_model_blip2_t5_caption_coco_flant5xl(self):
-    529     """
-    530     Load BLIP2 model with caption_coco_flant5xl architecture.
-    531
-   (...)
-    537         txt_processors (dict): preprocessors for text inputs.
-    538     """
-    539     (
-    540         summary_vqa_model,
-    541         summary_vqa_vis_processors,
-    542         summary_vqa_txt_processors,
---> 543     ) = load_model_and_preprocess(
-    544         name="blip2_t5",
-    545         model_type="caption_coco_flant5xl",
-    546         is_eval=True,
-    547         device=self.summary_device,
-    548     )
-    549     return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195, in load_model_and_preprocess(name, model_type, is_eval, device)
-    192 model_cls = registry.get_model_class(name)
-    194 # load model
---> 195 model = model_cls.from_pretrained(model_type=model_type)
-    197 if is_eval:
-    198     model.eval()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70, in BaseModel.from_pretrained(cls, model_type)
-     60 """
-     61 Build a pretrained model from default configuration file, specified by model_type.
-     62
-   (...)
-     67     - model (nn.Module): pretrained or finetuned model, depending on the configuration.
-     68 """
-     69 model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
----> 70 model = cls.from_config(model_cfg)
-     72 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip2_models/blip2_t5.py:368, in Blip2T5.from_config(cls, cfg)
-    364 max_txt_len = cfg.get("max_txt_len", 32)
-    366 apply_lemmatizer = cfg.get("apply_lemmatizer", False)
---> 368 model = cls(
-    369     vit_model=vit_model,
-    370     img_size=img_size,
-    371     drop_path_rate=drop_path_rate,
-    372     use_grad_checkpoint=use_grad_checkpoint,
-    373     vit_precision=vit_precision,
-    374     freeze_vit=freeze_vit,
-    375     num_query_token=num_query_token,
-    376     t5_model=t5_model,
-    377     prompt=prompt,
-    378     max_txt_len=max_txt_len,
-    379     apply_lemmatizer=apply_lemmatizer,
-    380 )
-    381 model.load_checkpoint_from_config(cfg)
-    383 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip2_models/blip2_t5.py:61, in Blip2T5.__init__(self, vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, freeze_vit, num_query_token, t5_model, prompt, max_txt_len, apply_lemmatizer)
-     57 super().__init__()
-     59 self.tokenizer = self.init_tokenizer()
----> 61 self.visual_encoder, self.ln_vision = self.init_vision_encoder(
-     62     vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
-     63 )
-     64 if freeze_vit:
-     65     for name, param in self.visual_encoder.named_parameters():
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip2_models/blip2.py:72, in Blip2Base.init_vision_encoder(cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision)
-     67 assert model_name in [
-     68     "eva_clip_g",
-     69     "clip_L",
-     70 ], "vit model must be eva_clip_g or clip_L"
-     71 if model_name == "eva_clip_g":
----> 72     visual_encoder = create_eva_vit_g(
-     73         img_size, drop_path_rate, use_grad_checkpoint, precision
-     74     )
-     75 elif model_name == "clip_L":
-     76     visual_encoder = create_clip_vit_L(img_size, use_grad_checkpoint, precision)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/eva_vit.py:430, in create_eva_vit_g(img_size, drop_path_rate, use_checkpoint, precision)
-    416 model = VisionTransformer(
-    417     img_size=img_size,
-    418     patch_size=14,
-   (...)
-    427     use_checkpoint=use_checkpoint,
-    428 )
-    429 url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth"
---> 430 cached_file = download_cached_file(
-    431     url, check_hash=False, progress=True
-    432 )
-    433 state_dict = torch.load(cached_file, map_location="cpu")
-    434 interpolate_pos_embed(model,state_dict)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/common/dist_utils.py:132, in download_cached_file(url, check_hash, progress)
-    129     return cached_file
-    131 if is_main_process():
---> 132     timm_hub.download_cached_file(url, check_hash, progress)
-    134 if is_dist_avail_and_initialized():
-    135     dist.barrier()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/timm/models/hub.py:51, in download_cached_file(url, check_hash, progress)
-     49         r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
-     50         hash_prefix = r.group(1) if r else None
----> 51     download_url_to_file(url, cached_file, hash_prefix, progress=progress)
-     52 return cached_file
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/torch/hub.py:636, in download_url_to_file(url, dst, hash_prefix, progress)
-    634 if len(buffer) == 0:
-    635     break
---> 636 f.write(buffer)
-    637 if hash_prefix is not None:
-    638     sha256.update(buffer)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/tempfile.py:478, in _TemporaryFileWrapper.__getattr__.<locals>.func_wrapper(*args, **kwargs)
-    476 @_functools.wraps(func)
-    477 def func_wrapper(*args, **kwargs):
---> 478     return func(*args, **kwargs)
-
-OSError: [Errno 28] No space left on device
-
-
-
-[24]:
+
+[ ]:
 
 
 for key in image_dict:
@@ -20503,189 +648,18 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[24], line 2
-      1 for key in image_dict:
-----> 2     image_dict[key] = obj.analyse_image(subdict = image_dict[key], analysis_type="summary_and_questions")
-      4 # analysis_type can be 
-      5 # "summary",
-      6 # "questions",
-      7 # "summary_and_questions".
-
-NameError: name 'obj' is not defined
-
-
-
-[25]:
+
+[ ]:
 
 
 image_dict
 
 
 
-
-[25]:
-
-
-
-
-{'img4': {'filename': 'data-test/img4.png',
-  'face': 'No',
-  'multiple_faces': 'No',
-  'no_faces': 0,
-  'wears_mask': ['No'],
-  'age': [None],
-  'gender': [None],
-  'race': [None],
-  'emotion': [None],
-  'emotion (category)': [None],
-  'text': 'MOODOVIN XI',
-  'text_language': 'en',
-  'text_english': 'MOODOVIN XI',
-  'text_clean': 'XI',
-  'text_summary': ' MOODOVIN XI XI: Vladimir Putin, Vladimir Vladmir Zelizer, Vladimir',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.66,
-  'entity': ['MOODOVIN XI'],
-  'entity_type': ['ORG'],
-  'const_image_summary': 'a river running through a city next to tall buildings',
-  '3_non-deterministic_summary': ['there is a pretty house that sits above the water',
-   'there is a building with a balcony and lots of plants on the side of it',
-   'several buildings with a river flowing through it']},
- 'img1': {'filename': 'data-test/img1.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_language': 'en',
-  'text_english': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_clean': 'THEORY The Quantum Theory of Collisions JOHN R. TAYLOR University of Colorado',
-  'text_summary': ' SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.91,
-  'entity': ['Non',
-   '##vist',
-   'Col',
-   '##N',
-   'R',
-   'T',
-   '##AYL',
-   'University of Colorado'],
-  'entity_type': ['MISC', 'MISC', 'MISC', 'ORG', 'PER', 'PER', 'ORG', 'ORG'],
-  'const_image_summary': 'a close up of a piece of paper with writing on it',
-  '3_non-deterministic_summary': ['a book opened to the book title for a novel',
-   'there are many text on this page',
-   'the text in a book is a handwritten poem']},
- 'img2': {'filename': 'data-test/img2.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_language': 'en',
-  'text_english': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_clean': 'THE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J .. H. WILKINSON',
-  'text_summary': ' H. H. W. WILKINSON: The Algebri',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.97,
-  'entity': ['ALGEBRAIC EIGENVAL', 'NVS TIO MI', 'J', 'H', 'WILKINSON'],
-  'entity_type': ['MISC', 'ORG', 'ORG', 'ORG', 'ORG'],
-  'const_image_summary': 'a yellow book with green lettering on it',
-  '3_non-deterministic_summary': ['a book cover with green writing on a black background',
-   'the title page of a book with information from its authors',
-   'a book about the age - related engineering and engineering']},
- 'img3': {'filename': 'data-test/img3.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'm OOOO 0000 www.',
-  'text_language': 'en',
-  'text_english': 'm OOOO 0000 www.',
-  'text_clean': 'm www .',
-  'text_summary': ' www. m OOOO 0000 0000 www.m.m OOOo 0000',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.62,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a bus that is sitting on the side of a road',
-  '3_non-deterministic_summary': ['there are cars and a bus on the side of the road',
-   'a bus that is sitting in the middle of a street',
-   'an aerial view of an empty city street with two large buses passing by']},
- 'img0': {'filename': 'data-test/img0.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler Mit zahlreichen Abbildungen und Rechenbeispielen und einer ausführlichen Integraltafel 3., verbesserte Auflage',
-  'text_language': 'de',
-  'text_english': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd, improved edition',
-  'text_clean': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd , improved edition',
-  'text_summary': ' Mathematical formula collection for engineers and scientists . Includes numerous illustrations and calculation examples . Includes',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 1.0,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a close up of an open book with writing on it',
-  '3_non-deterministic_summary': ['a close up of a book with many languages',
-   'a book that is opened up in german',
-   'book about mathemarche formulals and their meaning']},
- 'img5': {'filename': 'data-test/img5.png',
-  'no_faces': 1,
-  'age': [26],
-  'wears_mask': ['No'],
-  'emotion (category)': ['Negative'],
-  'multiple_faces': 'No',
-  'emotion': ['sad'],
-  'gender': ['Man'],
-  'race': [None],
-  'face': 'Yes',
-  'text': None,
-  'text_language': 'en',
-  'text_english': '',
-  'text_clean': '',
-  'text_summary': ' CNN.com will feature iReporter photos in a weekly Travel Snapshots gallery .',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.75,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a person running on a beach near a rock formation',
-  '3_non-deterministic_summary': ['a woman is running down the beach next to some rocks',
-   'a woman running along the beach by the ocean',
-   'there is a person running on the beach next to the ocean']}}
-
-
 You can also pass a list of questions to this cell if analysis_type="summary_and_questions" or analysis_type="questions". But the format of questions has changed in new models.
 Here is an example of a list of questions:
 
-[26]:
+[ ]:
 
 
 list_of_questions = [
@@ -20695,8 +669,8 @@ Cell In[24], line 2
 
 
 
-
-[27]:
+
+[ ]:
 
 
 for key in image_dict:
@@ -20704,24 +678,10 @@ Cell In[24], line 2
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[27], line 2
-      1 for key in image_dict:
-----> 2     image_dict[key] = obj.analyse_image(subdict = image_dict[key], analysis_type="questions", list_of_questions=list_of_questions)
-
-NameError: name 'obj' is not defined
-
-
 You can also pass a question with previous answers as context into this model and pass in questions like this one to get a more accurate answer:
 You can combine as many questions as you want in a single query as a list.
 
-[28]:
+[ ]:
 
 
 list_of_questions = [
@@ -20731,8 +691,8 @@ Cell In[27], line 2
 
 
 
-
-[29]:
+
+[ ]:
 
 
 for key in image_dict:
@@ -20740,184 +700,17 @@ Cell In[27], line 2
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[29], line 2
-      1 for key in image_dict:
-----> 2     image_dict[key] = obj.analyse_image(subdict = image_dict[key], analysis_type="questions", list_of_questions=list_of_questions)
-
-NameError: name 'obj' is not defined
-
-
-
-[30]:
+
+[ ]:
 
 
 image_dict
 
 
 
-
-[30]:
-
-
-
-
-{'img4': {'filename': 'data-test/img4.png',
-  'face': 'No',
-  'multiple_faces': 'No',
-  'no_faces': 0,
-  'wears_mask': ['No'],
-  'age': [None],
-  'gender': [None],
-  'race': [None],
-  'emotion': [None],
-  'emotion (category)': [None],
-  'text': 'MOODOVIN XI',
-  'text_language': 'en',
-  'text_english': 'MOODOVIN XI',
-  'text_clean': 'XI',
-  'text_summary': ' MOODOVIN XI XI: Vladimir Putin, Vladimir Vladmir Zelizer, Vladimir',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.66,
-  'entity': ['MOODOVIN XI'],
-  'entity_type': ['ORG'],
-  'const_image_summary': 'a river running through a city next to tall buildings',
-  '3_non-deterministic_summary': ['there is a pretty house that sits above the water',
-   'there is a building with a balcony and lots of plants on the side of it',
-   'several buildings with a river flowing through it']},
- 'img1': {'filename': 'data-test/img1.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_language': 'en',
-  'text_english': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_clean': 'THEORY The Quantum Theory of Collisions JOHN R. TAYLOR University of Colorado',
-  'text_summary': ' SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.91,
-  'entity': ['Non',
-   '##vist',
-   'Col',
-   '##N',
-   'R',
-   'T',
-   '##AYL',
-   'University of Colorado'],
-  'entity_type': ['MISC', 'MISC', 'MISC', 'ORG', 'PER', 'PER', 'ORG', 'ORG'],
-  'const_image_summary': 'a close up of a piece of paper with writing on it',
-  '3_non-deterministic_summary': ['a book opened to the book title for a novel',
-   'there are many text on this page',
-   'the text in a book is a handwritten poem']},
- 'img2': {'filename': 'data-test/img2.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_language': 'en',
-  'text_english': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_clean': 'THE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J .. H. WILKINSON',
-  'text_summary': ' H. H. W. WILKINSON: The Algebri',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.97,
-  'entity': ['ALGEBRAIC EIGENVAL', 'NVS TIO MI', 'J', 'H', 'WILKINSON'],
-  'entity_type': ['MISC', 'ORG', 'ORG', 'ORG', 'ORG'],
-  'const_image_summary': 'a yellow book with green lettering on it',
-  '3_non-deterministic_summary': ['a book cover with green writing on a black background',
-   'the title page of a book with information from its authors',
-   'a book about the age - related engineering and engineering']},
- 'img3': {'filename': 'data-test/img3.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'm OOOO 0000 www.',
-  'text_language': 'en',
-  'text_english': 'm OOOO 0000 www.',
-  'text_clean': 'm www .',
-  'text_summary': ' www. m OOOO 0000 0000 www.m.m OOOo 0000',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.62,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a bus that is sitting on the side of a road',
-  '3_non-deterministic_summary': ['there are cars and a bus on the side of the road',
-   'a bus that is sitting in the middle of a street',
-   'an aerial view of an empty city street with two large buses passing by']},
- 'img0': {'filename': 'data-test/img0.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler Mit zahlreichen Abbildungen und Rechenbeispielen und einer ausführlichen Integraltafel 3., verbesserte Auflage',
-  'text_language': 'de',
-  'text_english': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd, improved edition',
-  'text_clean': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd , improved edition',
-  'text_summary': ' Mathematical formula collection for engineers and scientists . Includes numerous illustrations and calculation examples . Includes',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 1.0,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a close up of an open book with writing on it',
-  '3_non-deterministic_summary': ['a close up of a book with many languages',
-   'a book that is opened up in german',
-   'book about mathemarche formulals and their meaning']},
- 'img5': {'filename': 'data-test/img5.png',
-  'no_faces': 1,
-  'age': [26],
-  'wears_mask': ['No'],
-  'emotion (category)': ['Negative'],
-  'multiple_faces': 'No',
-  'emotion': ['sad'],
-  'gender': ['Man'],
-  'race': [None],
-  'face': 'Yes',
-  'text': None,
-  'text_language': 'en',
-  'text_english': '',
-  'text_clean': '',
-  'text_summary': ' CNN.com will feature iReporter photos in a weekly Travel Snapshots gallery .',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.75,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a person running on a beach near a rock formation',
-  '3_non-deterministic_summary': ['a woman is running down the beach next to some rocks',
-   'a woman running along the beach by the ocean',
-   'there is a person running on the beach next to the ocean']}}
-
-
 You can also ask sequential questions if you pass the argument cosequential_questions=True. This means that the answers to previous questions will be passed as context to the next question. However, this method will work a bit slower, because for each image the answers to the questions will not be calculated simultaneously, but sequentially.
 
-[31]:
+[ ]:
 
 
 list_of_questions = [
@@ -20927,8 +720,8 @@ Cell In[29], line 2
 
 
 
-
-[32]:
+
+[ ]:
 
 
 for key in image_dict:
@@ -20936,187 +729,20 @@ Cell In[29], line 2
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[32], line 2
-      1 for key in image_dict:
-----> 2     image_dict[key] = obj.analyse_image(subdict = image_dict[key], analysis_type="questions", list_of_questions=list_of_questions, consequential_questions=True)
-
-NameError: name 'obj' is not defined
-
-
-
-[33]:
+
+[ ]:
 
 
 image_dict
 
 
 
-
-[33]:
-
-
-
-
-{'img4': {'filename': 'data-test/img4.png',
-  'face': 'No',
-  'multiple_faces': 'No',
-  'no_faces': 0,
-  'wears_mask': ['No'],
-  'age': [None],
-  'gender': [None],
-  'race': [None],
-  'emotion': [None],
-  'emotion (category)': [None],
-  'text': 'MOODOVIN XI',
-  'text_language': 'en',
-  'text_english': 'MOODOVIN XI',
-  'text_clean': 'XI',
-  'text_summary': ' MOODOVIN XI XI: Vladimir Putin, Vladimir Vladmir Zelizer, Vladimir',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.66,
-  'entity': ['MOODOVIN XI'],
-  'entity_type': ['ORG'],
-  'const_image_summary': 'a river running through a city next to tall buildings',
-  '3_non-deterministic_summary': ['there is a pretty house that sits above the water',
-   'there is a building with a balcony and lots of plants on the side of it',
-   'several buildings with a river flowing through it']},
- 'img1': {'filename': 'data-test/img1.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_language': 'en',
-  'text_english': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_clean': 'THEORY The Quantum Theory of Collisions JOHN R. TAYLOR University of Colorado',
-  'text_summary': ' SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.91,
-  'entity': ['Non',
-   '##vist',
-   'Col',
-   '##N',
-   'R',
-   'T',
-   '##AYL',
-   'University of Colorado'],
-  'entity_type': ['MISC', 'MISC', 'MISC', 'ORG', 'PER', 'PER', 'ORG', 'ORG'],
-  'const_image_summary': 'a close up of a piece of paper with writing on it',
-  '3_non-deterministic_summary': ['a book opened to the book title for a novel',
-   'there are many text on this page',
-   'the text in a book is a handwritten poem']},
- 'img2': {'filename': 'data-test/img2.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_language': 'en',
-  'text_english': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_clean': 'THE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J .. H. WILKINSON',
-  'text_summary': ' H. H. W. WILKINSON: The Algebri',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.97,
-  'entity': ['ALGEBRAIC EIGENVAL', 'NVS TIO MI', 'J', 'H', 'WILKINSON'],
-  'entity_type': ['MISC', 'ORG', 'ORG', 'ORG', 'ORG'],
-  'const_image_summary': 'a yellow book with green lettering on it',
-  '3_non-deterministic_summary': ['a book cover with green writing on a black background',
-   'the title page of a book with information from its authors',
-   'a book about the age - related engineering and engineering']},
- 'img3': {'filename': 'data-test/img3.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'm OOOO 0000 www.',
-  'text_language': 'en',
-  'text_english': 'm OOOO 0000 www.',
-  'text_clean': 'm www .',
-  'text_summary': ' www. m OOOO 0000 0000 www.m.m OOOo 0000',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.62,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a bus that is sitting on the side of a road',
-  '3_non-deterministic_summary': ['there are cars and a bus on the side of the road',
-   'a bus that is sitting in the middle of a street',
-   'an aerial view of an empty city street with two large buses passing by']},
- 'img0': {'filename': 'data-test/img0.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler Mit zahlreichen Abbildungen und Rechenbeispielen und einer ausführlichen Integraltafel 3., verbesserte Auflage',
-  'text_language': 'de',
-  'text_english': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd, improved edition',
-  'text_clean': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd , improved edition',
-  'text_summary': ' Mathematical formula collection for engineers and scientists . Includes numerous illustrations and calculation examples . Includes',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 1.0,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a close up of an open book with writing on it',
-  '3_non-deterministic_summary': ['a close up of a book with many languages',
-   'a book that is opened up in german',
-   'book about mathemarche formulals and their meaning']},
- 'img5': {'filename': 'data-test/img5.png',
-  'no_faces': 1,
-  'age': [26],
-  'wears_mask': ['No'],
-  'emotion (category)': ['Negative'],
-  'multiple_faces': 'No',
-  'emotion': ['sad'],
-  'gender': ['Man'],
-  'race': [None],
-  'face': 'Yes',
-  'text': None,
-  'text_language': 'en',
-  'text_english': '',
-  'text_clean': '',
-  'text_summary': ' CNN.com will feature iReporter photos in a weekly Travel Snapshots gallery .',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.75,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a person running on a beach near a rock formation',
-  '3_non-deterministic_summary': ['a woman is running down the beach next to some rocks',
-   'a woman running along the beach by the ocean',
-   'there is a person running on the beach next to the ocean']}}
-
-
 
 
 
 Detection of faces and facial expression analysis
 Faces and facial expressions are detected and analyzed using the EmotionDetector class from the faces module. Initially, it is detected if faces are present on the image using RetinaFace, followed by analysis if face masks are worn (Face-Mask-Detection). The detection of age, gender, race, and emotions is carried out with deepface.
-
+
 Depending on the features found on the image, the face detection module returns a different analysis content: If no faces are found on the image, all further steps are skipped and the result "face": "No", "multiple_faces": "No", "no_faces": 0, "wears_mask": ["No"], "age": [None], "gender": [None], "race": [None], "emotion": [None], "emotion (category)": [None] is returned. If one or several faces are found, up to three faces are analyzed if they are partially concealed by a face mask. If
 yes, only age and gender are detected; if no, also race, emotion, and dominant emotion are detected. In case of the latter, the output could look like this: "face": "Yes", "multiple_faces": "Yes", "no_faces": 2, "wears_mask": ["No", "No"], "age": [27, 28], "gender": ["Man", "Man"], "race": ["asian", None], "emotion": ["angry", "neutral"], "emotion (category)": ["Negative", "Neutral"], where for the two faces that are detected (given by no_faces), some of the values are returned as a list
 with the first item for the first (largest) face and the second item for the second (smaller) face (for example, "emotion" returns a list ["angry", "neutral"] signifying the first face expressing anger, and the second face having a neutral expression).
@@ -21125,8 +751,8 @@ default is set to 50%, so that a confidence above 0.5 results in an emotion bein
 From the seven facial expressions, an overall dominating emotion category is identified: negative, positive, or neutral emotion. These are defined with the facial expressions angry, disgust, fear and sad for the negative category, happy for the positive category, and surprise and neutral for the neutral category.
 A similar threshold as for the emotion recognition is set for the race detection, race_threshold, with the default set to 50% so that a confidence for the race above 0.5 only will return a value in the analysis.
 Summarizing, the face detection is carried out using the following method call and keywords, where emotion_threshold and race_threshold are optional:
-
-[34]:
+
+[ ]:
 
 
 for key in image_dict.keys():
@@ -21134,181 +760,6 @@ default is set to 50%, so that a confidence above 0.5 results in an emotion bein
 
 
 
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 1s 535ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 1s 535ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 1s 535ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 343ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 343ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 343ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 226ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 226ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 226ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 233ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 233ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 233ms/step
-
-
-
-
-
-
-
-- 1/1 [==============================] - ETA: 0s
- 
-- </pre> -
 -
-- 1/1 [==============================] - ETA: 0s
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - ETA: 0s
-
-
-
-
-
-
-
-
-- 1/1 [==============================] - 0s 21ms/step
- 
-- </pre> -
 -
-- 1/1 [==============================] - 0s 21ms/step
- 
-- end{sphinxVerbatim} -
 -
-
-1/1 [==============================] - 0s 21ms/step
 The thresholds can be adapted interactively in the notebook interface and the optimal value can then be used in a subsequent analysis of the whole data set.
 The output keys that are generated are
 
@@ -21365,7 +816,7 @@ default is set to 50%, so that a confidence above 0.5 results in an emotion bein
 Indexing and extracting features from images in selected folder
 First you need to select a model. You can choose one of the following models: - blip - blip2 - albef - clip_base - clip_vitl14 - clip_vitl14_336
 
-[35]:
+[ ]:
 
 
 model_type = "blip"
@@ -21379,15 +830,15 @@ default is set to 50%, so that a confidence above 0.5 results in an emotion bein
 
 To process the loaded images using the selected model, use the below code:
 
-[36]:
+[ ]:
 
 
 my_obj = ammico.MultimodalSearch(image_dict)
 
 
 
-
-[37]:
+
+[ ]:
 
 
 (
@@ -21404,1930 +855,10 @@ default is set to 50%, so that a confidence above 0.5 results in an emotion bein
 
 
 
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 0.00/1.97G [00:00<?, ?B/s]
- 
-- </pre> -
 -
-- 0%|          | 0.00/1.97G [00:00<?, ?B/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 0.00/1.97G [00:00<?, ?B/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 0%|          | 9.95M/1.97G [00:00<00:20, 104MB/s]
- 
-- </pre> -
 -
-- 0%|          | 9.95M/1.97G [00:00<00:20, 104MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-0%|          | 9.95M/1.97G [00:00<00:20, 104MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 1%|▏         | 25.5M/1.97G [00:00<00:15, 139MB/s]
- 
-- </pre> -
 -
-- 1%|▏         | 25.5M/1.97G [00:00<00:15, 139MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-1%|▏         | 25.5M/1.97G [00:00<00:15, 139MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 38.7M/1.97G [00:00<00:22, 91.8MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 38.7M/1.97G [00:00<00:22, 91.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 38.7M/1.97G [00:00<00:22, 91.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 2%|▏         | 48.7M/1.97G [00:00<00:33, 62.3MB/s]
- 
-- </pre> -
 -
-- 2%|▏         | 48.7M/1.97G [00:00<00:33, 62.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-2%|▏         | 48.7M/1.97G [00:00<00:33, 62.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 56.2M/1.97G [00:00<00:36, 56.1MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 56.2M/1.97G [00:00<00:36, 56.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 56.2M/1.97G [00:00<00:36, 56.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 3%|▎         | 64.0M/1.97G [00:00<00:33, 60.9MB/s]
- 
-- </pre> -
 -
-- 3%|▎         | 64.0M/1.97G [00:00<00:33, 60.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-3%|▎         | 64.0M/1.97G [00:00<00:33, 60.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▎         | 72.0M/1.97G [00:01<00:31, 65.7MB/s]
- 
-- </pre> -
 -
-- 4%|▎         | 72.0M/1.97G [00:01<00:31, 65.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▎         | 72.0M/1.97G [00:01<00:31, 65.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 80.0M/1.97G [00:01<00:29, 70.0MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 80.0M/1.97G [00:01<00:29, 70.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 80.0M/1.97G [00:01<00:29, 70.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 4%|▍         | 90.6M/1.97G [00:01<00:25, 80.6MB/s]
- 
-- </pre> -
 -
-- 4%|▍         | 90.6M/1.97G [00:01<00:25, 80.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-4%|▍         | 90.6M/1.97G [00:01<00:25, 80.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 5%|▍         | 98.9M/1.97G [00:01<00:25, 79.7MB/s]
- 
-- </pre> -
 -
-- 5%|▍         | 98.9M/1.97G [00:01<00:25, 79.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-5%|▍         | 98.9M/1.97G [00:01<00:25, 79.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▌         | 112M/1.97G [00:01<00:22, 88.0MB/s]
- 
-- </pre> -
 -
-- 6%|▌         | 112M/1.97G [00:01<00:22, 88.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▌         | 112M/1.97G [00:01<00:22, 88.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 6%|▋         | 128M/1.97G [00:01<00:20, 98.8MB/s]
- 
-- </pre> -
 -
-- 6%|▋         | 128M/1.97G [00:01<00:20, 98.8MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-6%|▋         | 128M/1.97G [00:01<00:20, 98.8MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 7%|▋         | 144M/1.97G [00:01<00:17, 115MB/s]
- 
-- </pre> -
 -
-- 7%|▋         | 144M/1.97G [00:01<00:17, 115MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-7%|▋         | 144M/1.97G [00:01<00:17, 115MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 8%|▊         | 160M/1.97G [00:01<00:16, 115MB/s]
- 
-- </pre> -
 -
-- 8%|▊         | 160M/1.97G [00:01<00:16, 115MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-8%|▊         | 160M/1.97G [00:01<00:16, 115MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 9%|▊         | 176M/1.97G [00:02<00:15, 122MB/s]
- 
-- </pre> -
 -
-- 9%|▊         | 176M/1.97G [00:02<00:15, 122MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-9%|▊         | 176M/1.97G [00:02<00:15, 122MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 9%|▉         | 188M/1.97G [00:02<00:16, 118MB/s]
- 
-- </pre> -
 -
-- 9%|▉         | 188M/1.97G [00:02<00:16, 118MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-9%|▉         | 188M/1.97G [00:02<00:16, 118MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 10%|█         | 205M/1.97G [00:02<00:14, 134MB/s]
- 
-- </pre> -
 -
-- 10%|█         | 205M/1.97G [00:02<00:14, 134MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-10%|█         | 205M/1.97G [00:02<00:14, 134MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 11%|█         | 224M/1.97G [00:02<00:15, 118MB/s]
- 
-- </pre> -
 -
-- 11%|█         | 224M/1.97G [00:02<00:15, 118MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-11%|█         | 224M/1.97G [00:02<00:15, 118MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 12%|█▏        | 240M/1.97G [00:02<00:14, 128MB/s]
- 
-- </pre> -
 -
-- 12%|█▏        | 240M/1.97G [00:02<00:14, 128MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-12%|█▏        | 240M/1.97G [00:02<00:14, 128MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 13%|█▎        | 256M/1.97G [00:02<00:14, 129MB/s]
- 
-- </pre> -
 -
-- 13%|█▎        | 256M/1.97G [00:02<00:14, 129MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-13%|█▎        | 256M/1.97G [00:02<00:14, 129MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 14%|█▍        | 280M/1.97G [00:02<00:11, 153MB/s]
- 
-- </pre> -
 -
-- 14%|█▍        | 280M/1.97G [00:02<00:11, 153MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-14%|█▍        | 280M/1.97G [00:02<00:11, 153MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 15%|█▍        | 300M/1.97G [00:02<00:10, 167MB/s]
- 
-- </pre> -
 -
-- 15%|█▍        | 300M/1.97G [00:02<00:10, 167MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-15%|█▍        | 300M/1.97G [00:02<00:10, 167MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 16%|█▌        | 320M/1.97G [00:03<00:10, 168MB/s]
- 
-- </pre> -
 -
-- 16%|█▌        | 320M/1.97G [00:03<00:10, 168MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-16%|█▌        | 320M/1.97G [00:03<00:10, 168MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 17%|█▋        | 344M/1.97G [00:03<00:09, 184MB/s]
- 
-- </pre> -
 -
-- 17%|█▋        | 344M/1.97G [00:03<00:09, 184MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-17%|█▋        | 344M/1.97G [00:03<00:09, 184MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 18%|█▊        | 362M/1.97G [00:03<00:10, 170MB/s]
- 
-- </pre> -
 -
-- 18%|█▊        | 362M/1.97G [00:03<00:10, 170MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-18%|█▊        | 362M/1.97G [00:03<00:10, 170MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 19%|█▉        | 379M/1.97G [00:03<00:10, 159MB/s]
- 
-- </pre> -
 -
-- 19%|█▉        | 379M/1.97G [00:03<00:10, 159MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-19%|█▉        | 379M/1.97G [00:03<00:10, 159MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 20%|█▉        | 394M/1.97G [00:03<00:11, 154MB/s]
- 
-- </pre> -
 -
-- 20%|█▉        | 394M/1.97G [00:03<00:11, 154MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-20%|█▉        | 394M/1.97G [00:03<00:11, 154MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 20%|██        | 409M/1.97G [00:03<00:11, 144MB/s]
- 
-- </pre> -
 -
-- 20%|██        | 409M/1.97G [00:03<00:11, 144MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-20%|██        | 409M/1.97G [00:03<00:11, 144MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 21%|██▏       | 430M/1.97G [00:03<00:10, 165MB/s]
- 
-- </pre> -
 -
-- 21%|██▏       | 430M/1.97G [00:03<00:10, 165MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-21%|██▏       | 430M/1.97G [00:03<00:10, 165MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 22%|██▏       | 447M/1.97G [00:03<00:09, 167MB/s]
- 
-- </pre> -
 -
-- 22%|██▏       | 447M/1.97G [00:03<00:09, 167MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-22%|██▏       | 447M/1.97G [00:03<00:09, 167MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 23%|██▎       | 471M/1.97G [00:03<00:08, 190MB/s]
- 
-- </pre> -
 -
-- 23%|██▎       | 471M/1.97G [00:03<00:08, 190MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-23%|██▎       | 471M/1.97G [00:03<00:08, 190MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 24%|██▍       | 494M/1.97G [00:04<00:07, 206MB/s]
- 
-- </pre> -
 -
-- 24%|██▍       | 494M/1.97G [00:04<00:07, 206MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-24%|██▍       | 494M/1.97G [00:04<00:07, 206MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 26%|██▌       | 518M/1.97G [00:04<00:07, 218MB/s]
- 
-- </pre> -
 -
-- 26%|██▌       | 518M/1.97G [00:04<00:07, 218MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-26%|██▌       | 518M/1.97G [00:04<00:07, 218MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 27%|██▋       | 539M/1.97G [00:04<00:16, 96.6MB/s]
- 
-- </pre> -
 -
-- 27%|██▋       | 539M/1.97G [00:04<00:16, 96.6MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-27%|██▋       | 539M/1.97G [00:04<00:16, 96.6MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 28%|██▊       | 564M/1.97G [00:04<00:12, 123MB/s]
- 
-- </pre> -
 -
-- 28%|██▊       | 564M/1.97G [00:04<00:12, 123MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-28%|██▊       | 564M/1.97G [00:04<00:12, 123MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 29%|██▉       | 591M/1.97G [00:04<00:09, 152MB/s]
- 
-- </pre> -
 -
-- 29%|██▉       | 591M/1.97G [00:04<00:09, 152MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-29%|██▉       | 591M/1.97G [00:04<00:09, 152MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 30%|███       | 613M/1.97G [00:04<00:09, 163MB/s]
- 
-- </pre> -
 -
-- 30%|███       | 613M/1.97G [00:04<00:09, 163MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-30%|███       | 613M/1.97G [00:04<00:09, 163MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 32%|███▏      | 641M/1.97G [00:05<00:07, 194MB/s]
- 
-- </pre> -
 -
-- 32%|███▏      | 641M/1.97G [00:05<00:07, 194MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-32%|███▏      | 641M/1.97G [00:05<00:07, 194MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 33%|███▎      | 668M/1.97G [00:05<00:06, 215MB/s]
- 
-- </pre> -
 -
-- 33%|███▎      | 668M/1.97G [00:05<00:06, 215MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-33%|███▎      | 668M/1.97G [00:05<00:06, 215MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 34%|███▍      | 695M/1.97G [00:05<00:05, 232MB/s]
- 
-- </pre> -
 -
-- 34%|███▍      | 695M/1.97G [00:05<00:05, 232MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-34%|███▍      | 695M/1.97G [00:05<00:05, 232MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 36%|███▌      | 720M/1.97G [00:05<00:06, 224MB/s]
- 
-- </pre> -
 -
-- 36%|███▌      | 720M/1.97G [00:05<00:06, 224MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-36%|███▌      | 720M/1.97G [00:05<00:06, 224MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 37%|███▋      | 743M/1.97G [00:05<00:06, 194MB/s]
- 
-- </pre> -
 -
-- 37%|███▋      | 743M/1.97G [00:05<00:06, 194MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-37%|███▋      | 743M/1.97G [00:05<00:06, 194MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 38%|███▊      | 769M/1.97G [00:05<00:06, 211MB/s]
- 
-- </pre> -
 -
-- 38%|███▊      | 769M/1.97G [00:05<00:06, 211MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-38%|███▊      | 769M/1.97G [00:05<00:06, 211MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 39%|███▉      | 791M/1.97G [00:05<00:05, 215MB/s]
- 
-- </pre> -
 -
-- 39%|███▉      | 791M/1.97G [00:05<00:05, 215MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-39%|███▉      | 791M/1.97G [00:05<00:05, 215MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 40%|████      | 813M/1.97G [00:05<00:05, 215MB/s]
- 
-- </pre> -
 -
-- 40%|████      | 813M/1.97G [00:05<00:05, 215MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-40%|████      | 813M/1.97G [00:05<00:05, 215MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 41%|████▏     | 834M/1.97G [00:06<00:18, 67.2MB/s]
- 
-- </pre> -
 -
-- 41%|████▏     | 834M/1.97G [00:06<00:18, 67.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-41%|████▏     | 834M/1.97G [00:06<00:18, 67.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 43%|████▎     | 858M/1.97G [00:06<00:14, 86.5MB/s]
- 
-- </pre> -
 -
-- 43%|████▎     | 858M/1.97G [00:06<00:14, 86.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-43%|████▎     | 858M/1.97G [00:06<00:14, 86.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 43%|████▎     | 876M/1.97G [00:07<00:13, 91.9MB/s]
- 
-- </pre> -
 -
-- 43%|████▎     | 876M/1.97G [00:07<00:13, 91.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-43%|████▎     | 876M/1.97G [00:07<00:13, 91.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 44%|████▍     | 896M/1.97G [00:07<00:15, 76.9MB/s]
- 
-- </pre> -
 -
-- 44%|████▍     | 896M/1.97G [00:07<00:15, 76.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-44%|████▍     | 896M/1.97G [00:07<00:15, 76.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▌     | 920M/1.97G [00:07<00:11, 97.7MB/s]
- 
-- </pre> -
 -
-- 46%|████▌     | 920M/1.97G [00:07<00:11, 97.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▌     | 920M/1.97G [00:07<00:11, 97.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 46%|████▋     | 935M/1.97G [00:07<00:12, 93.0MB/s]
- 
-- </pre> -
 -
-- 46%|████▋     | 935M/1.97G [00:07<00:12, 93.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-46%|████▋     | 935M/1.97G [00:07<00:12, 93.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 47%|████▋     | 952M/1.97G [00:07<00:11, 97.5MB/s]
- 
-- </pre> -
 -
-- 47%|████▋     | 952M/1.97G [00:07<00:11, 97.5MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-47%|████▋     | 952M/1.97G [00:07<00:11, 97.5MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 48%|████▊     | 976M/1.97G [00:08<00:10, 108MB/s]
- 
-- </pre> -
 -
-- 48%|████▊     | 976M/1.97G [00:08<00:10, 108MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-48%|████▊     | 976M/1.97G [00:08<00:10, 108MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 50%|████▉     | 0.98G/1.97G [00:08<00:07, 141MB/s]
- 
-- </pre> -
 -
-- 50%|████▉     | 0.98G/1.97G [00:08<00:07, 141MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-50%|████▉     | 0.98G/1.97G [00:08<00:07, 141MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 51%|█████     | 1.00G/1.97G [00:08<00:06, 151MB/s]
- 
-- </pre> -
 -
-- 51%|█████     | 1.00G/1.97G [00:08<00:06, 151MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-51%|█████     | 1.00G/1.97G [00:08<00:06, 151MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 52%|█████▏    | 1.02G/1.97G [00:08<00:06, 155MB/s]
- 
-- </pre> -
 -
-- 52%|█████▏    | 1.02G/1.97G [00:08<00:06, 155MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-52%|█████▏    | 1.02G/1.97G [00:08<00:06, 155MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 53%|█████▎    | 1.04G/1.97G [00:09<00:14, 71.1MB/s]
- 
-- </pre> -
 -
-- 53%|█████▎    | 1.04G/1.97G [00:09<00:14, 71.1MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-53%|█████▎    | 1.04G/1.97G [00:09<00:14, 71.1MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 54%|█████▍    | 1.07G/1.97G [00:09<00:10, 95.7MB/s]
- 
-- </pre> -
 -
-- 54%|█████▍    | 1.07G/1.97G [00:09<00:10, 95.7MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-54%|█████▍    | 1.07G/1.97G [00:09<00:10, 95.7MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 55%|█████▌    | 1.09G/1.97G [00:09<00:07, 121MB/s]
- 
-- </pre> -
 -
-- 55%|█████▌    | 1.09G/1.97G [00:09<00:07, 121MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-55%|█████▌    | 1.09G/1.97G [00:09<00:07, 121MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 56%|█████▋    | 1.11G/1.97G [00:09<00:06, 142MB/s]
- 
-- </pre> -
 -
-- 56%|█████▋    | 1.11G/1.97G [00:09<00:06, 142MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-56%|█████▋    | 1.11G/1.97G [00:09<00:06, 142MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 57%|█████▋    | 1.13G/1.97G [00:09<00:06, 137MB/s]
- 
-- </pre> -
 -
-- 57%|█████▋    | 1.13G/1.97G [00:09<00:06, 137MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-57%|█████▋    | 1.13G/1.97G [00:09<00:06, 137MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 58%|█████▊    | 1.15G/1.97G [00:10<00:14, 60.0MB/s]
- 
-- </pre> -
 -
-- 58%|█████▊    | 1.15G/1.97G [00:10<00:14, 60.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-58%|█████▊    | 1.15G/1.97G [00:10<00:14, 60.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 59%|█████▉    | 1.16G/1.97G [00:10<00:13, 65.3MB/s]
- 
-- </pre> -
 -
-- 59%|█████▉    | 1.16G/1.97G [00:10<00:13, 65.3MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-59%|█████▉    | 1.16G/1.97G [00:10<00:13, 65.3MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 60%|█████▉    | 1.18G/1.97G [00:10<00:10, 80.0MB/s]
- 
-- </pre> -
 -
-- 60%|█████▉    | 1.18G/1.97G [00:10<00:10, 80.0MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-60%|█████▉    | 1.18G/1.97G [00:10<00:10, 80.0MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 61%|██████    | 1.19G/1.97G [00:11<00:17, 47.2MB/s]
- 
-- </pre> -
 -
-- 61%|██████    | 1.19G/1.97G [00:11<00:17, 47.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-61%|██████    | 1.19G/1.97G [00:11<00:17, 47.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 61%|██████▏   | 1.21G/1.97G [00:11<00:13, 59.9MB/s]
- 
-- </pre> -
 -
-- 61%|██████▏   | 1.21G/1.97G [00:11<00:13, 59.9MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-61%|██████▏   | 1.21G/1.97G [00:11<00:13, 59.9MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 1.22G/1.97G [00:11<00:16, 50.2MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 1.22G/1.97G [00:11<00:16, 50.2MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 1.22G/1.97G [00:11<00:16, 50.2MB/s]
-
-
-
-
-
-
-
-
-- more-to-come:-
-
- class:-
- stderr -
-
-
-
-- 62%|██████▏   | 1.23G/1.97G [00:11<00:07, 111MB/s]
- 
-- </pre> -
 -
-- 62%|██████▏   | 1.23G/1.97G [00:11<00:07, 111MB/s]
- 
-- end{sphinxVerbatim} -
 -
-
-62%|██████▏   | 1.23G/1.97G [00:11<00:07, 111MB/s]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-OSError                                   Traceback (most recent call last)
-Cell In[37], line 8
-      1 (
-      2     model,
-      3     vis_processors,
-      4     txt_processors,
-      5     image_keys,
-      6     image_names,
-      7     features_image_stacked,
-----> 8 ) = my_obj.parsing_images(
-      9     model_type, 
-     10     path_to_save_tensors="/content/drive/MyDrive/misinformation-data/",
-     11     )
-
-File ~/work/AMMICO/AMMICO/ammico/multimodal_search.py:363, in MultimodalSearch.parsing_images(self, model_type, path_to_save_tensors, path_to_load_tensors)
-    349 select_extract_image_features = {
-    350     "blip2": MultimodalSearch.extract_image_features_blip2,
-    351     "blip": MultimodalSearch.extract_image_features_basic,
-   (...)
-    355     "clip_vitl14_336": MultimodalSearch.extract_image_features_clip,
-    356 }
-    358 if model_type in select_model.keys():
-    359     (
-    360         model,
-    361         vis_processors,
-    362         txt_processors,
---> 363     ) = select_model[
-    364         model_type
-    365     ](self, MultimodalSearch.multimodal_device)
-    366 else:
-    367     raise SyntaxError(
-    368         "Please, use one of the following models: blip2, blip, albef, clip_base, clip_vitl14, clip_vitl14_336"
-    369     )
-
-File ~/work/AMMICO/AMMICO/ammico/multimodal_search.py:55, in MultimodalSearch.load_feature_extractor_model_blip(self, device)
-     43 def load_feature_extractor_model_blip(self, device: str = "cpu"):
-     44     """
-     45     Load base blip_feature_extractor model and preprocessors for visual and text inputs from lavis.models.
-     46
-   (...)
-     53         txt_processors (dict): preprocessors for text inputs.
-     54     """
----> 55     model, vis_processors, txt_processors = load_model_and_preprocess(
-     56         name="blip_feature_extractor",
-     57         model_type="base",
-     58         is_eval=True,
-     59         device=device,
-     60     )
-     61     return model, vis_processors, txt_processors
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195, in load_model_and_preprocess(name, model_type, is_eval, device)
-    192 model_cls = registry.get_model_class(name)
-    194 # load model
---> 195 model = model_cls.from_pretrained(model_type=model_type)
-    197 if is_eval:
-    198     model.eval()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70, in BaseModel.from_pretrained(cls, model_type)
-     60 """
-     61 Build a pretrained model from default configuration file, specified by model_type.
-     62
-   (...)
-     67     - model (nn.Module): pretrained or finetuned model, depending on the configuration.
-     68 """
-     69 model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
----> 70 model = cls.from_config(model_cfg)
-     72 return model
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_feature_extractor.py:208, in BlipFeatureExtractor.from_config(cls, cfg)
-    206 pretrain_path = cfg.get("pretrained", None)
-    207 if pretrain_path is not None:
---> 208     msg = model.load_from_pretrained(url_or_filename=pretrain_path)
-    209 else:
-    210     warnings.warn("No pretrained weights are loaded.")
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip.py:30, in BlipBase.load_from_pretrained(self, url_or_filename)
-     28 def load_from_pretrained(self, url_or_filename):
-     29     if is_url(url_or_filename):
----> 30         cached_file = download_cached_file(
-     31             url_or_filename, check_hash=False, progress=True
-     32         )
-     33         checkpoint = torch.load(cached_file, map_location="cpu")
-     34     elif os.path.isfile(url_or_filename):
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/lavis/common/dist_utils.py:132, in download_cached_file(url, check_hash, progress)
-    129     return cached_file
-    131 if is_main_process():
---> 132     timm_hub.download_cached_file(url, check_hash, progress)
-    134 if is_dist_avail_and_initialized():
-    135     dist.barrier()
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/timm/models/hub.py:51, in download_cached_file(url, check_hash, progress)
-     49         r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
-     50         hash_prefix = r.group(1) if r else None
----> 51     download_url_to_file(url, cached_file, hash_prefix, progress=progress)
-     52 return cached_file
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/torch/hub.py:636, in download_url_to_file(url, dst, hash_prefix, progress)
-    634 if len(buffer) == 0:
-    635     break
---> 636 f.write(buffer)
-    637 if hash_prefix is not None:
-    638     sha256.update(buffer)
-
-File /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/tempfile.py:478, in _TemporaryFileWrapper.__getattr__.<locals>.func_wrapper(*args, **kwargs)
-    476 @_functools.wraps(func)
-    477 def func_wrapper(*args, **kwargs):
---> 478     return func(*args, **kwargs)
-
-OSError: [Errno 28] No space left on device
-
-
 The images are then processed and stored in a numerical representation, a tensor. These tensors do not change for the same image and same model - so if you run this analysis once, and save the tensors giving a path with the keyword path_to_save_tensors, a file with filename .<Number_of_images>_<model_name>_saved_features_image.pt will be placed there.
 This can save you time if you want to analyse same images with the same model but different questions. To run using the saved tensors, execute the below code giving the path and name of the tensor file.
 
-[38]:
+[ ]:
 
 
 # (
@@ -23350,7 +881,7 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 Formulate your search queries
 Next, you need to form search queries. You can search either by image or by text. You can search for a single query, or you can search for several queries at once, the computational time should not be much different. The format of the queries is as follows:
 
-[39]:
+[ ]:
 
 
 import importlib_resources                                                                       # only require for image query example
@@ -23367,8 +898,8 @@ File /opt/hostedtoolcache/Python/3.9.18/x64/lib/pyth
 
 You can filter your results in 3 different ways: - filter_number_of_images limits the number of images found. That is, if the parameter filter_number_of_images = 10, then the first 10 images that best match the query will be shown. The other images ranks will be set to None and the similarity value to 0. - filter_val_limit limits the output of images with a similarity value not bigger than filter_val_limit. That is, if the parameter filter_val_limit = 0.2, all images
 with similarity less than 0.2 will be discarded. - filter_rel_error (percentage) limits the output of images with a similarity value not bigger than 100 * abs(current_simularity_value - best_simularity_value_in_current_search)/best_simularity_value_in_current_search < filter_rel_error. That is, if we set filter_rel_error = 30, it means that if the top1 image have 0.5 similarity value, we discard all image with similarity less than 0.35.
-
-[40]:
+
+[ ]:
 
 
 similarity, sorted_lists = my_obj.multimodal_search(
@@ -23384,235 +915,34 @@ with similarity less than 0.2 will be discarded. - 
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[40], line 2
-      1 similarity, sorted_lists = my_obj.multimodal_search(
-----> 2     model,
-      3     vis_processors,
-      4     txt_processors,
-      5     model_type,
-      6     image_keys,
-      7     features_image_stacked,
-      8     search_query,
-      9     filter_number_of_images=20,
-     10 )
-
-NameError: name 'model' is not defined
-
-
-
-[41]:
+
+[ ]:
 
 
 similarity
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[41], line 1
-----> 1 similarity
-
-NameError: name 'similarity' is not defined
-
-
-
-[42]:
+
+[ ]:
 
 
 sorted_lists
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[42], line 1
-----> 1 sorted_lists
-
-NameError: name 'sorted_lists' is not defined
-
-
 After launching multimodal_search function, the results of each query will be added to the source dictionary.
-
-[43]:
+
+[ ]:
 
 
 image_dict
 
 
 
-
-[43]:
-
-
-
-
-{'img4': {'filename': 'data-test/img4.png',
-  'face': 'No',
-  'multiple_faces': 'No',
-  'no_faces': 0,
-  'wears_mask': ['No'],
-  'age': [None],
-  'gender': [None],
-  'race': [None],
-  'emotion': [None],
-  'emotion (category)': [None],
-  'text': 'MOODOVIN XI',
-  'text_language': 'en',
-  'text_english': 'MOODOVIN XI',
-  'text_clean': 'XI',
-  'text_summary': ' MOODOVIN XI XI: Vladimir Putin, Vladimir Vladmir Zelizer, Vladimir',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.66,
-  'entity': ['MOODOVIN XI'],
-  'entity_type': ['ORG'],
-  'const_image_summary': 'a river running through a city next to tall buildings',
-  '3_non-deterministic_summary': ['there is a pretty house that sits above the water',
-   'there is a building with a balcony and lots of plants on the side of it',
-   'several buildings with a river flowing through it']},
- 'img1': {'filename': 'data-test/img1.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_language': 'en',
-  'text_english': 'SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions JOHN R. TAYLOR University of Colorado',
-  'text_clean': 'THEORY The Quantum Theory of Collisions JOHN R. TAYLOR University of Colorado',
-  'text_summary': ' SCATTERING THEORY The Quantum Theory of Nonrelativistic Collisions',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.91,
-  'entity': ['Non',
-   '##vist',
-   'Col',
-   '##N',
-   'R',
-   'T',
-   '##AYL',
-   'University of Colorado'],
-  'entity_type': ['MISC', 'MISC', 'MISC', 'ORG', 'PER', 'PER', 'ORG', 'ORG'],
-  'const_image_summary': 'a close up of a piece of paper with writing on it',
-  '3_non-deterministic_summary': ['a book opened to the book title for a novel',
-   'there are many text on this page',
-   'the text in a book is a handwritten poem']},
- 'img2': {'filename': 'data-test/img2.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_language': 'en',
-  'text_english': 'THE ALGEBRAIC EIGENVALUE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J.. H. WILKINSON',
-  'text_clean': 'THE PROBLEM DOM NVS TIO MINA Monographs on Numerical Analysis J .. H. WILKINSON',
-  'text_summary': ' H. H. W. WILKINSON: The Algebri',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.97,
-  'entity': ['ALGEBRAIC EIGENVAL', 'NVS TIO MI', 'J', 'H', 'WILKINSON'],
-  'entity_type': ['MISC', 'ORG', 'ORG', 'ORG', 'ORG'],
-  'const_image_summary': 'a yellow book with green lettering on it',
-  '3_non-deterministic_summary': ['a book cover with green writing on a black background',
-   'the title page of a book with information from its authors',
-   'a book about the age - related engineering and engineering']},
- 'img3': {'filename': 'data-test/img3.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'm OOOO 0000 www.',
-  'text_language': 'en',
-  'text_english': 'm OOOO 0000 www.',
-  'text_clean': 'm www .',
-  'text_summary': ' www. m OOOO 0000 0000 www.m.m OOOo 0000',
-  'sentiment': 'NEGATIVE',
-  'sentiment_score': 0.62,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a bus that is sitting on the side of a road',
-  '3_non-deterministic_summary': ['there are cars and a bus on the side of the road',
-   'a bus that is sitting in the middle of a street',
-   'an aerial view of an empty city street with two large buses passing by']},
- 'img0': {'filename': 'data-test/img0.png',
-  'no_faces': 0,
-  'age': [None],
-  'wears_mask': ['No'],
-  'emotion (category)': [None],
-  'multiple_faces': 'No',
-  'emotion': [None],
-  'gender': [None],
-  'race': [None],
-  'face': 'No',
-  'text': 'Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler Mit zahlreichen Abbildungen und Rechenbeispielen und einer ausführlichen Integraltafel 3., verbesserte Auflage',
-  'text_language': 'de',
-  'text_english': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd, improved edition',
-  'text_clean': 'Mathematical formula collection for engineers and scientists With numerous illustrations and calculation examples and a detailed integral table 3rd , improved edition',
-  'text_summary': ' Mathematical formula collection for engineers and scientists . Includes numerous illustrations and calculation examples . Includes',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 1.0,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a close up of an open book with writing on it',
-  '3_non-deterministic_summary': ['a close up of a book with many languages',
-   'a book that is opened up in german',
-   'book about mathemarche formulals and their meaning']},
- 'img5': {'filename': 'data-test/img5.png',
-  'no_faces': 1,
-  'age': [26],
-  'wears_mask': ['No'],
-  'emotion (category)': ['Negative'],
-  'multiple_faces': 'No',
-  'emotion': ['sad'],
-  'gender': ['Man'],
-  'race': [None],
-  'face': 'Yes',
-  'text': None,
-  'text_language': 'en',
-  'text_english': '',
-  'text_clean': '',
-  'text_summary': ' CNN.com will feature iReporter photos in a weekly Travel Snapshots gallery .',
-  'sentiment': 'POSITIVE',
-  'sentiment_score': 0.75,
-  'entity': [],
-  'entity_type': [],
-  'const_image_summary': 'a person running on a beach near a rock formation',
-  '3_non-deterministic_summary': ['a woman is running down the beach next to some rocks',
-   'a woman running along the beach by the ocean',
-   'there is a person running on the beach next to the ocean']}}
-
-
 A special function was written to present the search results conveniently.
-
-[44]:
+
+[ ]:
 
 
 my_obj.show_results(
@@ -23621,65 +951,8 @@ Cell In[42], line 1
 
 
 
-
-
-
-
-
-'Your search query: politician press conference'
-
-
-
-
-
-
-
-'--------------------------------------------------'
-
-
-
-
-
-
-
-'Results:'
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-KeyError                                  Traceback (most recent call last)
-Cell In[44], line 1
-----> 1 my_obj.show_results(
-      2     search_query[0], # you can change the index to see the results for other queries
-      3 )
-
-File ~/work/AMMICO/AMMICO/ammico/multimodal_search.py:970, in MultimodalSearch.show_results(self, query, itm, image_gradcam_with_itm)
-    967     current_querry_val = list(query.values())[0]
-    968     current_querry_rank = "rank " + list(query.values())[0]
---> 970 for s in sorted(
-    971     self.subdict.items(), key=lambda t: t[1][current_querry_val], reverse=True
-    972 ):
-    973     if s[1][current_querry_rank] is None:
-    974         break
-
-File ~/work/AMMICO/AMMICO/ammico/multimodal_search.py:971, in MultimodalSearch.show_results.<locals>.<lambda>(t)
-    967     current_querry_val = list(query.values())[0]
-    968     current_querry_rank = "rank " + list(query.values())[0]
-    970 for s in sorted(
---> 971     self.subdict.items(), key=lambda t: t[1][current_querry_val], reverse=True
-    972 ):
-    973     if s[1][current_querry_rank] is None:
-    974         break
-
-KeyError: 'politician press conference'
-
-
-
-[45]:
+
+[ ]:
 
 
 my_obj.show_results(
@@ -23688,77 +961,13 @@ File ~/work/AMMICO/AMMICO/ammico/multimodal_search.p
 
 
 
-
-
-
-
-
-'Your search query: '
-
-
-
-
-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-'--------------------------------------------------'
-
-
-
-
-
-
-
-'Results:'
-
-
-
-
-
-
-
----------------------------------------------------------------------------
-KeyError                                  Traceback (most recent call last)
-Cell In[45], line 1
-----> 1 my_obj.show_results(
-      2     search_query[3], # you can change the index to see the results for other queries
-      3 )
-
-File ~/work/AMMICO/AMMICO/ammico/multimodal_search.py:970, in MultimodalSearch.show_results(self, query, itm, image_gradcam_with_itm)
-    967     current_querry_val = list(query.values())[0]
-    968     current_querry_rank = "rank " + list(query.values())[0]
---> 970 for s in sorted(
-    971     self.subdict.items(), key=lambda t: t[1][current_querry_val], reverse=True
-    972 ):
-    973     if s[1][current_querry_rank] is None:
-    974         break
-
-File ~/work/AMMICO/AMMICO/ammico/multimodal_search.py:971, in MultimodalSearch.show_results.<locals>.<lambda>(t)
-    967     current_querry_val = list(query.values())[0]
-    968     current_querry_rank = "rank " + list(query.values())[0]
-    970 for s in sorted(
---> 971     self.subdict.items(), key=lambda t: t[1][current_querry_val], reverse=True
-    972 ):
-    973     if s[1][current_querry_rank] is None:
-    974         break
-
-KeyError: '/home/runner/work/AMMICO/AMMICO/ammico/data/test-crop-image.png'
-
-
 
 
 Improve the search results
 For even better results, a slightly different approach has been prepared that can improve search results. It is quite resource-intensive, so it is applied after the main algorithm has found the most relevant images. This approach works only with text queries and it skips image queries. Among the parameters you can choose 3 models: "blip_base", "blip_large", "blip2_coco". If you get an Out of Memory error, try reducing the batch_size value (minimum = 1), which is the number of
 images being processed simultaneously. With the parameter need_grad_cam = True/False you can enable the calculation of the heat map of each image to be processed and save them in image_gradcam_with_itm. Thus the image_text_match_reordering() function calculates new similarity values and new ranks for each image. The resulting values are added to the general dictionary.
 
-[46]:
+[ ]:
 
 
 itm_model = "blip_base"
@@ -23767,8 +976,8 @@ images being processed simultaneously. With the parameter 
-[47]:
+
+[ ]:
 
 
 itm_scores, image_gradcam_with_itm = my_obj.image_text_match_reordering(
@@ -23782,29 +991,9 @@ images being processed simultaneously. With the parameter 
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[47], line 4
-      1 itm_scores, image_gradcam_with_itm = my_obj.image_text_match_reordering(
-      2     search_query,
-      3     itm_model,
-----> 4     image_keys,
-      5     sorted_lists,
-      6     batch_size=1,
-      7     need_grad_cam=True,
-      8 )
-
-NameError: name 'image_keys' is not defined
-
-
 Then using the same output function you can add the itm=True argument to output the new image order. Remember that for images querys, an error will be thrown with itm=True argument. You can also add the image_gradcam_with_itm along with itm=True argument to output the heat maps of the calculated images.
-
-[48]:
+
+[ ]:
 
 
 my_obj.show_results(
@@ -23813,27 +1002,12 @@ Cell In[47], line 4
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[48], line 2
-      1 my_obj.show_results(
-----> 2     search_query[0], itm=True, image_gradcam_with_itm=image_gradcam_with_itm
-      3 )
-
-NameError: name 'image_gradcam_with_itm' is not defined
-
-
 
 
 Save search results to csv
 Convert the dictionary of dictionarys into a dictionary with lists:
-
-[49]:
+
+[ ]:
 
 
 outdict = ammico.append_data_to_dict(image_dict)
@@ -23841,64 +1015,24 @@ Cell In[48], line 2
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-AttributeError                            Traceback (most recent call last)
-Cell In[49], line 1
-----> 1 outdict = ammico.append_data_to_dict(image_dict)
-      2 df = ammico.dump_df(outdict)
-
-AttributeError: module 'ammico' has no attribute 'append_data_to_dict'
-
-
 Check the dataframe:
-
-[50]:
+
+[ ]:
 
 
 df.head(10)
 
 
 
-
-
-
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-Cell In[50], line 1
-----> 1 df.head(10)
-
-NameError: name 'df' is not defined
-
-
 Write the csv file:
-
-[51]:
+
+