diff --git a/ammico/faces.py b/ammico/faces.py index 3730cbd..debbfa6 100644 --- a/ammico/faces.py +++ b/ammico/faces.py @@ -275,7 +275,6 @@ class EmotionDetector(AnalysisMethod): # one dictionary per face that is detected in the image # since we are only passing a subregion of the image # that contains one face, the list will only contain one dict - print("actions are:", self.actions) if self.actions != []: fresult["result"] = DeepFace.analyze( img_path=face, diff --git a/ammico/notebooks/DemoNotebook_ammico.ipynb b/ammico/notebooks/DemoNotebook_ammico.ipynb index 6c3d355..9d9642d 100644 --- a/ammico/notebooks/DemoNotebook_ammico.ipynb +++ b/ammico/notebooks/DemoNotebook_ammico.ipynb @@ -276,8 +276,7 @@ "# dump file name\n", "dump_file = \"dump_file.csv\"\n", "# dump every N images\n", - "dump_every = 10\n", - "print(len(image_dict))" + "dump_every = 10" ] }, { @@ -395,8 +394,15 @@ "model = ammico.MultimodalSummaryModel()\n", "image_summary_detector = ammico.ImageSummaryDetector(\n", " subdict=image_dict, summary_model=model\n", - ")\n", - "\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "for num, key in tqdm(\n", " enumerate(image_dict.keys()), total=len(image_dict)\n", "): # loop through all images\n", @@ -470,7 +476,7 @@ "metadata": {}, "outputs": [], "source": [ - "image_df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" + "image_df.to_csv(\"data_out.csv\")" ] }, { @@ -489,7 +495,7 @@ "metadata": {}, "outputs": [], "source": [ - "ta = ammico.TextAnalyzer(csv_path=\"../data/ref/test.csv\", column_key=\"text\")" + "ta = ammico.TextAnalyzer(csv_path=\"test.csv\", column_key=\"text\")" ] }, { @@ -589,7 +595,7 @@ "metadata": {}, "outputs": [], "source": [ - "# os.environ[\"GOOGLE_APPLICATION_CREDENTIALS\"] = \"/content/drive/MyDrive/misinformation-data/misinformation-campaign-981aa55a3b13.json\"\n" + "# os.environ[\"GOOGLE_APPLICATION_CREDENTIALS\"] = \".json\"\n" ] }, { @@ -612,13 +618,6 @@ "): # loop through all images\n", " image_dict[key] = ammico.TextDetector(\n", " image_dict[key], # analyse image with TextDetector and update dict\n", - " analyse_text=True,\n", - " model_names=[\n", - " \"sshleifer/distilbart-cnn-12-6\",\n", - " \"distilbert-base-uncased-finetuned-sst-2-english\",\n", - " \"dbmdz/bert-large-cased-finetuned-conll03-english\",\n", - " ],\n", - " revision_numbers=[\"a4f8f3e\", \"af0f99b\", \"f2482bf\"],\n", " ).analyse_image()\n", "\n", " if (\n", @@ -636,7 +635,7 @@ "source": [ "# write output to csv\n", "image_df = ammico.get_dataframe(image_dict)\n", - "image_df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" + "image_df.to_csv(\"data_out.csv\")" ] }, { @@ -1035,7 +1034,7 @@ "source": [ "# write output to csv\n", "image_df = ammico.get_dataframe(image_dict)\n", - "image_df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" + "image_df.to_csv(\"data_out.csv\")" ] }, { @@ -1445,24 +1444,6 @@ "The output are N primary colors and their corresponding percentage." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n", - "Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "analysis_explorer = ammico.AnalysisExplorer(image_dict)\n", - "analysis_explorer.run_server(port=8057)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1525,7 +1506,7 @@ "metadata": {}, "outputs": [], "source": [ - "df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" + "df.to_csv(\"data_out.csv\")" ] }, { @@ -1533,7 +1514,7 @@ "metadata": {}, "source": [ "## Further detector modules\n", - "Further detector modules exist, also it is possible to carry out a topic analysis on the text data, as well as crop social media posts automatically. These are more experimental features and have their own demonstration notebooks." + "Please get in touch or open an issue, if you would like to propose further detector modules." ] }, {