From c136b91fbad74fab24f7d8bef29b45ad5eb60e16 Mon Sep 17 00:00:00 2001 From: Petr Andriushchenko Date: Thu, 23 Feb 2023 14:09:19 +0100 Subject: [PATCH] add model change function to summary --- misinformation/summary.py | 58 +++++++++++++++++++++++++++------------ 1 file changed, 41 insertions(+), 17 deletions(-) diff --git a/misinformation/summary.py b/misinformation/summary.py index 4448a0c..bc1d6b4 100644 --- a/misinformation/summary.py +++ b/misinformation/summary.py @@ -15,9 +15,23 @@ class SummaryDetector(AnalysisMethod): summary_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - summary_model, summary_vis_processors, _ = load_model_and_preprocess( - name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device - ) + def load_model_base(self): + summary_model, summary_vis_processors, _ = load_model_and_preprocess( + name="blip_caption", + model_type="base_coco", + is_eval=True, + device=SummaryDetector.summary_device, + ) + return summary_model, summary_vis_processors + + def load_model_large(self): + summary_model, summary_vis_processors, _ = load_model_and_preprocess( + name="blip_caption", + model_type="large_coco", + is_eval=True, + device=SummaryDetector.summary_device, + ) + return summary_model, summary_vis_processors def set_keys(self) -> dict: params = { @@ -26,21 +40,29 @@ class SummaryDetector(AnalysisMethod): } return params - def analyse_image(self): + def analyse_image(self, model_type): + select_model = { + "base": self.load_model_base, + "large": self.load_model_large, + } + summary_model, summary_vis_processors = select_model[model_type]() path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( - self.summary_vis_processors["eval"](raw_image) + summary_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) - self.image_summary["const_image_summary"] = self.summary_model.generate( - {"image": image} - )[0] - self.image_summary["3_non-deterministic summary"] = self.summary_model.generate( - {"image": image}, use_nucleus_sampling=True, num_captions=3 - ) + with torch.no_grad(): + self.image_summary["const_image_summary"] = summary_model.generate( + {"image": image} + )[0] + self.image_summary[ + "3_non-deterministic summary" + ] = summary_model.generate( + {"image": image}, use_nucleus_sampling=True, num_captions=3 + ) for key in self.image_summary: self.subdict[key] = self.image_summary[key] return self.subdict @@ -53,12 +75,13 @@ class SummaryDetector(AnalysisMethod): name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device ) - def analyse_questions(self, list_of_questions): + def analyse_questions(self, model_type, list_of_questions): + if len(list_of_questions) > 0: path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( - self.summary_VQA_vis_processors["eval"](raw_image) + summary_VQA_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) @@ -68,10 +91,11 @@ class SummaryDetector(AnalysisMethod): batch_size = len(list_of_questions) image_batch = image.repeat(batch_size, 1, 1, 1) - answers_batch = self.summary_VQA_model.predict_answers( - samples={"image": image_batch, "text_input": question_batch}, - inference_method="generate", - ) + with torch.no_grad(): + answers_batch = self.summary_VQA_model.predict_answers( + samples={"image": image_batch, "text_input": question_batch}, + inference_method="generate", + ) for q, a in zip(question_batch, answers_batch): self.image_summary[q] = a