зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 13:06:04 +02:00
add text summary
Этот коммит содержится в:
родитель
a5c43b6488
Коммит
cf1e1b83d7
@ -116,6 +116,18 @@ def test_sentiment_analysis():
|
||||
assert test_obj.subdict["subjectivity"] == 0.6
|
||||
|
||||
|
||||
def test_text_summary(get_path):
|
||||
mydict = {}
|
||||
test_obj = tt.TextDetector(mydict, analyse_text=True)
|
||||
ref_file = get_path + "example_summary.txt"
|
||||
with open(ref_file, "r", encoding="utf8") as file:
|
||||
reference_text = file.read()
|
||||
test_obj.subdict["text_english"] = reference_text
|
||||
test_obj.text_summary()
|
||||
reference_summary = " I’m sorry, but I don’t want to be an emperor. That’s not my business. I should like to help everyone - if possible - Jew, Gentile - black man - white . We all want to help one another. In this world there is room for everyone. The way of life can be free and beautiful, but we have lost the way ."
|
||||
assert mydict["summary_text"] == reference_summary
|
||||
|
||||
|
||||
def test_PostprocessText(set_testdict, get_path):
|
||||
reference_dict = "THE\nALGEBRAIC\nEIGENVALUE\nPROBLEM\nDOM\nNVS TIO\nMINA\nMonographs\non Numerical Analysis\nJ.. H. WILKINSON"
|
||||
reference_df = "Mathematische Formelsammlung\nfür Ingenieure und Naturwissenschaftler\nMit zahlreichen Abbildungen und Rechenbeispielen\nund einer ausführlichen Integraltafel\n3., verbesserte Auflage"
|
||||
|
||||
@ -9,6 +9,7 @@ from misinformation import utils
|
||||
import grpc
|
||||
import pandas as pd
|
||||
from bertopic import BERTopic
|
||||
from transformers import pipeline
|
||||
|
||||
# make widgets work again
|
||||
# clean text has weird spaces and separation of "do n't"
|
||||
@ -119,6 +120,14 @@ class TextDetector(utils.AnalysisMethod):
|
||||
# where 0.0 is very objective and 1.0 is very subjective
|
||||
self.subdict["subjectivity"] = self.doc._.blob.subjectivity
|
||||
|
||||
def text_summary(self):
|
||||
# use the transformers pipeline to summarize the text
|
||||
pipe = pipeline("summarization")
|
||||
self.subdict.update(pipe(self.subdict["text_english"])[0])
|
||||
|
||||
# def text_sentiment_transformers(self):
|
||||
# pipe = pipeline("text-classification")
|
||||
|
||||
|
||||
class PostprocessText:
|
||||
def __init__(
|
||||
|
||||
@ -48,6 +48,7 @@ dependencies = [
|
||||
"tensorflow",
|
||||
"textblob",
|
||||
"torch",
|
||||
"transformers",
|
||||
"google-cloud-vision",
|
||||
"setuptools",
|
||||
"opencv-contrib-python",
|
||||
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user