editted github docs.yml, Dockerfile and README.md

Этот коммит содержится в:
Petr Andriushchenko 2023-04-25 11:49:12 +02:00
родитель 1d31d188dc
Коммит d1f65d016d
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4C4A5DCF634115B6
3 изменённых файлов: 10 добавлений и 10 удалений

2
.github/workflows/docs.yml поставляемый
Просмотреть файл

@ -15,7 +15,7 @@ jobs:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
with: with:
fetch-depth: 0 # otherwise, you will failed to push refs to dest repo fetch-depth: 0 # otherwise, you will failed to push refs to dest repo
- name: install misinformation - name: install ammico
run: | run: |
pip install -e . pip install -e .
python -m pip install -r requirements-dev.txt python -m pip install -r requirements-dev.txt

Просмотреть файл

@ -6,20 +6,20 @@ RUN apt update && apt install -y build-essential libgl1 libglib2.0-0 libsm6 libx
USER $NB_USER USER $NB_USER
# Copy the repository into the container # Copy the repository into the container
COPY --chown=${NB_UID} . /opt/misinformation COPY --chown=${NB_UID} . /opt/ammico
# Install the Python package # Install the Python package
RUN python -m pip install /opt/misinformation RUN python -m pip install /opt/ammico
# Make JupyterLab the default for this application # Make JupyterLab the default for this application
ENV JUPYTER_ENABLE_LAB=yes ENV JUPYTER_ENABLE_LAB=yes
# Export where the data is located # Export where the data is located
ENV XDG_DATA_HOME=/opt/misinformation/data ENV XDG_DATA_HOME=/opt/ammico/data
# Copy notebooks into the home directory # Copy notebooks into the home directory
RUN rm -rf $HOME/work RUN rm -rf $HOME/work
RUN cp /opt/misinformation/notebooks/*.ipynb $HOME RUN cp /opt/ammico/notebooks/*.ipynb $HOME
ARG GOOGLE_CREDS ARG GOOGLE_CREDS
ENV GOOGLE_APPLICATION_CREDENTIALS=credentials.json ENV GOOGLE_APPLICATION_CREDENTIALS=credentials.json

Просмотреть файл

@ -45,17 +45,17 @@ This will install the package and its dependencies locally.
There are sample notebooks in the `notebooks` folder for you to explore the package: There are sample notebooks in the `notebooks` folder for you to explore the package:
1. Text extraction: Use the notebook `get-text-from-image.ipynb` to extract any text from the images. The text is directly translated into English. If the text should be further analysed, set the keyword `analyse_text` to `True` as demonstrated in the notebook.\ 1. Text extraction: Use the notebook `get-text-from-image.ipynb` to extract any text from the images. The text is directly translated into English. If the text should be further analysed, set the keyword `analyse_text` to `True` as demonstrated in the notebook.\
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/get-text-from-image.ipynb)** **You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/ammico/blob/main/notebooks/get-text-from-image.ipynb)**
Place the data files and google cloud vision API key in your google drive to access the data. Place the data files and google cloud vision API key in your google drive to access the data.
1. Emotion recognition: Use the notebook `facial_expressions.ipynb` to identify if there are faces on the image, if they are wearing masks, and if they are not wearing masks also the race, gender and dominant emotion. 1. Emotion recognition: Use the notebook `facial_expressions.ipynb` to identify if there are faces on the image, if they are wearing masks, and if they are not wearing masks also the race, gender and dominant emotion.
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/facial_expressions.ipynb)** **You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/ammico/blob/main/notebooks/facial_expressions.ipynb)**
Place the data files in your google drive to access the data. Place the data files in your google drive to access the data.
1. Content extraction: Use the notebook `image_summary.ipynb` to create captions for the images and ask questions about the image content. 1. Content extraction: Use the notebook `image_summary.ipynb` to create captions for the images and ask questions about the image content.
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/image_summary.ipynb)** **You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/ammico/blob/main/notebooks/image_summary.ipynb)**
1. Multimodal content: Use the notebook `multimodal_search.ipynb` to find the best fitting images to an image or text query. 1. Multimodal content: Use the notebook `multimodal_search.ipynb` to find the best fitting images to an image or text query.
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/multimodal_search.ipynb)** **You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/ammico/blob/main/notebooks/multimodal_search.ipynb)**
1. Object analysis: Use the notebook `ojects_expression.ipynb` to identify certain objects in the image. Currently, the following objects are being identified: person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, cell phone. 1. Object analysis: Use the notebook `ojects_expression.ipynb` to identify certain objects in the image. Currently, the following objects are being identified: person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, cell phone.
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/objects_expression.ipynb)** **You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/ammico/blob/main/notebooks/objects_expression.ipynb)**
There are further notebooks that are currently of exploratory nature (`colors_expression.ipynb` to identify certain colors on the image). To crop social media posts use the `cropposts.ipynb` notebook. There are further notebooks that are currently of exploratory nature (`colors_expression.ipynb` to identify certain colors on the image). To crop social media posts use the `cropposts.ipynb` notebook.