diff --git a/ammico/multimodal_search.py b/ammico/multimodal_search.py index 1532ace..2bbf8aa 100644 --- a/ammico/multimodal_search.py +++ b/ammico/multimodal_search.py @@ -350,7 +350,7 @@ class MultimodalSearch(AnalysisMethod): def itm_text_precessing(self, search_query): for query in search_query: - if not (len(query) == 1) and (query in ("image", "text_input")): + if (len(query) != 1) and (query in ("image", "text_input")): raise SyntaxError( 'Each querry must contain either an "image" or a "text_input"' ) diff --git a/ammico/summary.py b/ammico/summary.py index 7e4d9d4..5f7d82a 100644 --- a/ammico/summary.py +++ b/ammico/summary.py @@ -58,9 +58,9 @@ class SummaryDetector(AnalysisMethod): def analyse_questions(self, list_of_questions): ( - summary_VQA_model, - summary_VQA_vis_processors, - summary_VQA_txt_processors, + summary_vqa_model, + summary_vqa_vis_processors, + summary_vqa_txt_processors, ) = load_model_and_preprocess( name="blip_vqa", model_type="vqav2", @@ -71,18 +71,18 @@ class SummaryDetector(AnalysisMethod): path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( - summary_VQA_vis_processors["eval"](raw_image) + summary_vqa_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) question_batch = [] for quest in list_of_questions: - question_batch.append(summary_VQA_txt_processors["eval"](quest)) + question_batch.append(summary_vqa_txt_processors["eval"](quest)) batch_size = len(list_of_questions) image_batch = image.repeat(batch_size, 1, 1, 1) with no_grad(): - answers_batch = summary_VQA_model.predict_answers( + answers_batch = summary_vqa_model.predict_answers( samples={"image": image_batch, "text_input": question_batch}, inference_method="generate", )