[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
Этот коммит содержится в:
pre-commit-ci[bot] 2023-02-16 09:02:12 +00:00
родитель 0b140c2245
Коммит eb48b6513f
2 изменённых файлов: 160 добавлений и 479 удалений

Просмотреть файл

@ -4,98 +4,174 @@ from PIL import Image
from IPython.display import display
from lavis.models import load_model_and_preprocess
class MultimodalSearch(AnalysisMethod):
def __init__(self, subdict: dict) -> None:
super().__init__(subdict)
#self.subdict.update(self.set_keys())
# self.subdict.update(self.set_keys())
multimodal_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_feature_extractor_model(device, model_type):
if (model_type == "blip2"):
model, vis_processors, txt_processors = load_model_and_preprocess(name="blip2_feature_extractor", model_type="pretrain", is_eval=True, device=device)
elif (model_type == "blip"):
model, vis_processors, txt_processors = load_model_and_preprocess(name="blip_feature_extractor", model_type="base", is_eval=True, device=device)
elif (model_type == "albef"):
model, vis_processors, txt_processors = load_model_and_preprocess(name="albef_feature_extractor", model_type="base", is_eval=True, device=device)
elif (model_type == "clip_base"):
model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="base", is_eval=True, device=device)
elif (model_type == "clip_rn50"):
model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="RN50", is_eval=True, device=device)
elif (model_type == "clip_vitl14"):
model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="ViT-L-14", is_eval=True, device=device)
if model_type == "blip2":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="blip2_feature_extractor",
model_type="pretrain",
is_eval=True,
device=device,
)
elif model_type == "blip":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="blip_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
elif model_type == "albef":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="albef_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
elif model_type == "clip_base":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="base",
is_eval=True,
device=device,
)
elif model_type == "clip_rn50":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="RN50",
is_eval=True,
device=device,
)
elif model_type == "clip_vitl14":
model, vis_processors, txt_processors = load_model_and_preprocess(
name="clip_feature_extractor",
model_type="ViT-L-14",
is_eval=True,
device=device,
)
else:
print("Please, use one of the following models: blip2, blip, albef, clip_base, clip_rn50, clip_vitl14")
print(
"Please, use one of the following models: blip2, blip, albef, clip_base, clip_rn50, clip_vitl14"
)
return model, vis_processors, txt_processors
def read_img(filepath):
raw_image = Image.open(filepath).convert("RGB")
return raw_image
def read_and_process_images(image_paths, vis_processor):
raw_images = [MultimodalSearch.read_img(path) for path in image_paths]
images = [vis_processor["eval"](r_img).unsqueeze(0).to(MultimodalSearch.multimodal_device) for r_img in raw_images]
images = [
vis_processor["eval"](r_img)
.unsqueeze(0)
.to(MultimodalSearch.multimodal_device)
for r_img in raw_images
]
images_tensors = torch.stack(images)
return raw_images, images_tensors
def extract_image_features(model, images_tensors, model_type):
if (model_type == "blip2"):
with torch.cuda.amp.autocast(enabled=(MultimodalSearch.multimodal_device != torch.device("cpu"))):
features_image = [model.extract_features({"image": ten}, mode="image") for ten in images_tensors]
if model_type == "blip2":
with torch.cuda.amp.autocast(
enabled=(MultimodalSearch.multimodal_device != torch.device("cpu"))
):
features_image = [
model.extract_features({"image": ten}, mode="image")
for ten in images_tensors
]
else:
features_image = [model.extract_features({"image": ten}, mode="image") for ten in images_tensors]
features_image_stacked = torch.stack([feat.image_embeds_proj[:,0,:].squeeze(0) for feat in features_image])
features_image = [
model.extract_features({"image": ten}, mode="image")
for ten in images_tensors
]
features_image_stacked = torch.stack(
[feat.image_embeds_proj[:, 0, :].squeeze(0) for feat in features_image]
)
return features_image_stacked
def save_tensors(features_image_stacked, name = 'saved_features_image.pt'):
with open(name,'wb') as f:
def save_tensors(features_image_stacked, name="saved_features_image.pt"):
with open(name, "wb") as f:
torch.save(features_image_stacked, f)
return name
def load_tensors(name = 'saved_features_image.pt'):
def load_tensors(name="saved_features_image.pt"):
features_image_stacked = torch.load(name)
return features_image_stacked
def extract_text_features(model, text_input):
sample_text = {"text_input": [text_input]}
features_text = model.extract_features(sample_text, mode="text")
features_text = model.extract_features(sample_text, mode="text")
return features_text
def parsing_images(self, model_type):
image_keys = sorted(self.keys())
image_names = [self[k]['filename'] for k in image_keys]
model, vis_processors, txt_processors = MultimodalSearch.load_feature_extractor_model(MultimodalSearch.multimodal_device, model_type)
raw_images, images_tensors = MultimodalSearch.read_and_process_images(image_names, vis_processors)
features_image_stacked = MultimodalSearch.extract_image_features(model, images_tensors, model_type)
image_names = [self[k]["filename"] for k in image_keys]
(
model,
vis_processors,
txt_processors,
) = MultimodalSearch.load_feature_extractor_model(
MultimodalSearch.multimodal_device, model_type
)
raw_images, images_tensors = MultimodalSearch.read_and_process_images(
image_names, vis_processors
)
features_image_stacked = MultimodalSearch.extract_image_features(
model, images_tensors, model_type
)
MultimodalSearch.save_tensors(features_image_stacked)
return image_keys, image_names, features_image_stacked
def multimodal_search(self, model_type, image_keys, features_image_stacked, search_query):
def multimodal_search(
self, model_type, image_keys, features_image_stacked, search_query
):
features_image_stacked.to(MultimodalSearch.multimodal_device)
model, vis_processors, txt_processors = MultimodalSearch.load_feature_extractor_model(MultimodalSearch.multimodal_device, model_type)
(
model,
vis_processors,
txt_processors,
) = MultimodalSearch.load_feature_extractor_model(
MultimodalSearch.multimodal_device, model_type
)
multi_text_input = [txt_processors["eval"](query) for query in search_query]
multi_sample = [ {"text_input": [query]} for query in multi_text_input]
multi_features_text = [model.extract_features(sample, mode="text") for sample in multi_sample]
multi_features_text_stacked = torch.stack([features.text_embeds_proj[:, 0, :].squeeze(0) for features in multi_features_text]).to(MultimodalSearch.multimodal_device)
multi_sample = [{"text_input": [query]} for query in multi_text_input]
multi_features_text = [
model.extract_features(sample, mode="text") for sample in multi_sample
]
multi_features_text_stacked = torch.stack(
[
features.text_embeds_proj[:, 0, :].squeeze(0)
for features in multi_features_text
]
).to(MultimodalSearch.multimodal_device)
similarity = features_image_stacked @ multi_features_text_stacked.t()
sorted_lists = [ sorted(range(len(similarity)), key=lambda k: similarity[k,i], reverse=True) for i in range(len(similarity[0])) ]
places = [ [item.index(i) for i in range(len(item))] for item in sorted_lists ]
sorted_lists = [
sorted(range(len(similarity)), key=lambda k: similarity[k, i], reverse=True)
for i in range(len(similarity[0]))
]
places = [[item.index(i) for i in range(len(item))] for item in sorted_lists]
for q in range(len(search_query)):
for i,key in zip(range(len(image_keys)),image_keys):
self[key]['rank ' + search_query[q]] = places[q][i]
for q in range(len(search_query)):
for i, key in zip(range(len(image_keys)), image_keys):
self[key]["rank " + search_query[q]] = places[q][i]
self[key][search_query[q]] = similarity[i][q].item()
return self
def show_results(self,query):
for s in sorted(self.items(), key=lambda t:t[1][query], reverse=True):
p1 = Image.open(s[1]['filename']).convert("RGB")
def show_results(self, query):
for s in sorted(self.items(), key=lambda t: t[1][query], reverse=True):
p1 = Image.open(s[1]["filename"]).convert("RGB")
p1.thumbnail((400, 400))
display(p1,s[1][query])
display(p1, s[1][query])

463
notebooks/multimodal_search.ipynb сгенерированный

Различия файлов скрыты, потому что одна или несколько строк слишком длинны