From eca5ee0d3960e604c12eebba9ed4f44868acad72 Mon Sep 17 00:00:00 2001 From: iulusoy Date: Tue, 29 Oct 2024 13:07:03 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20ssciwr/A?= =?UTF-8?q?MMICO@725d3858f7506656b0f9e626229ba0a6604be909=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- build/doctrees/environment.pickle | Bin 149071 -> 149071 bytes .../notebooks/DemoNotebook_ammico.doctree | Bin 186208 -> 186208 bytes build/html/notebooks/DemoNotebook_ammico.html | 6 +++--- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/build/doctrees/environment.pickle b/build/doctrees/environment.pickle index 77517c9e9cb45980133e0b2742fc4a002842d36f..d89d22031f690eaa4ca2a2ac447a604e2fe304fc 100644 GIT binary patch delta 10172 zcmchdd03Uz*1%nxSs>;~L?#hSMHDAclp!j_0W~u-MFdoifGF720*>MkC@K14yRMm< z)lJhYbv`?G%bQka-kWKIsj1Jt`(1mVbJ$no zvaiOa-Yd?{b!J|6Zed!ZH(p|*3m(_Ky8DnG* zNHx+EIvPUzd_1rN%1Orlfm4j}Nx??efJyMYtiy;8fNZHH4QOlZO7J&UCAKpn6DKJD<@f+& zYhp(o69zdlI%HskF)uMFx>in;=%q`3;glZnF~vnw>S~-(?@6k}eT{)B{+YcVI#rx> z_W4s_?8A_L57oGbYVU_?tg$z#gQKjXx8a!F!9ldz!+=zO^PdXzr2;aHs;rfpM|9aO zCZ;?7J(WB{?8jQUfdqFaJ|sOgZP=(ZbcjV1j-afP((KawobIK0vrDsb^Gfq_N~h1H z7TVizD76s0bN1(xfn!2p#O&$I=OFwa<-kq%{+hK#>6m~UA+ z%nP8xSUY?#R#cR^)p&PgBwv*QUdEUaNk-$dk;Xqp%rrh76=@6~Ioc@9j5KzS%r*Fk zNMqQjX-4FTNd84Fgc^58B>}dU8NtmfV3@J#*(9Uu$Vj6$bCfY@^a%OZn%3Ckn=I4A zHlfM%uuEt%J^Uy%nI0O1CeuTs&}1sOEi{=5934=TDZ@u-GG&CJHmk&(iZbPvHA!fETY=2R@d`V=ATTZMpOO*HZH}&Q0*+OMijKEG;kmtei() zyiHEaxe0|#l=n6^=DAvCW^bklW6g9|%Yd90$!FP^_fJ*w8X;sr6DDBO{ z>q=WQ{UT{tldq+I#s$SUl`vK3j#({=?fy%tVnbhUtF-(wuDsqA`&3QC7ll|n=i1u$ zt#nnfJr=krZTKQ*Tlp$mJLQY*i5c5hv@_~obvBMKak6|~b3oOTB;RwtYpI zs;8+gL23PYZ>3ef8LPCfSM?yx=+8T?SmnTn*s&l>#@m-wJsE4etH_#n+9_?@yQ*i# zZy$tOF1~+4#s2oe1{LwOwIc>4c?D4It&ql(Q zD5K$HXUm{%r&Q@)|L|00&}Vt&b2U!m_|_=P=6}-oy)D~zM5#8KzKl~^uU$$rn!Zfo zVJ^(x^2Ki35`491pbGQ(?n$NPe{btv)0rqf@hrF-PN%&rzwiH6^<~G8-V|!=_%W7` z-w95Z-~)%0)8U|pc1H0n=fK-C{;+L^GLJ+kC-$3Xorm_8UB`Y@B{wwK7JT~&M-|p| zrjya(l&i(@^g$KXbjC;dGLJ;Pz8kzOgU_8+zSIjLkN5&DTN>5IWtA%MFzfs3`s1=O2jMfe8QYQ60aYi!ke zz$K+_@B+1O`04;m9*gTN!8cdE()$G8X65ns^4oKhwX|MbpiE4S&O>C zY!z^;JE#<6ZRr6=RqUxa_(`eX_J$)$-P#v^Q|f#1T3y*68WdfWsJmV~2tYM4KN;Ro z0o_vJ8>Kp=!F{FrJq;Zh_gn#ecyT546Q=^dlMc`DFs?E(pF9}8;eDpSbaD2Kv zqcv~{JdVc}uk{08>vKb)0uAedVX#HWg_%&vP&$u-zX`kkS;!Z%-E$Bnc+&ImgRs3{ zfWtyIj>G<f2b^};l04?^{_zFGjKN_8uOKt{B8F|1Pb#0*%V)R#)2T&ec6V6IYEz6AKH z$jUa(hV_b0cp1J|YGN5+o{<4BRX~QKKbj#~sU7D5o)0o0X+A7h^yC7VrPQg5;9aGL zRDoHko2#KrsR>H}Utw9p(AVH)MGq~7Il#MSs3jMdgeiQ>v$o|Pyd3vQnbm6r*u#nn zI+d;Q2Kb}pZOyKO=cV%Rl`vW=JvsE2%A7Y~s#LDM2?bJ_u?h;Ma^)?UCY8ds0aL`h zJSdVoEovRk{gBDHHp|z+(IjzW&nT7mkPMKQkPKIO1Ib|W`hif~Jy3{?M~1(=b)Y4# z92qXA`F!&`kP35o^E=Q57V?nw&?QG)U}{Yc?d26rR#t0rdc<;h#BzPaa(~3~c*Ocp zSqrTnu7|MZC%cbAw2wmEo=}MHqY&LkAudfQME6n5=h+8fNMA7t z)p8E1WgXSBifUOywXC38mame5Tv1~I)qbN!M{5M2~;MO z|8NMRjQSZa&ZeTsHf`_&CQmsGm;-q2VOhbx!?ID&U!kv)Y$hgx@4Ny&UQQ*m3JbGm z&Z*M{XZ{LtSn&N{VHkz>jo``Gz?XX*u@z2GB>M>TqL@TQ>W@G_B1wwa9fcUIuIEum zM^SbZo<{NYQ8@zVV~|247|!P%g)XmKz|AeYB=2EojAM|8@wbmbHi~h-!9*0F{{}Cj z2x^eWH2f|6<+J$io_;Vw=8xMeg>*D{{|P zphaDA<1?CZAO3s=LJ4>faBqePEF9Ym{ZSM&%YoE4Lo`~4nq}KAS7qB7S7oEsSD_F3 zc3hQ>-nlB<>3o@e~ku9Xb#gKw#Q+Xis1e zfs~&h;Ng1gxDI{DokniY76>5lj09dzx%nl<1=)XkJx8|4Wb$f@T)cm^$oI+nh8+5^ z8xSI9fW%@FAD|c~-}%cCZQ4xjHMLiDY2Ca!)0Z9b^I&|G%odp6O!pq~p8qdzFs7A< zWjkXrTUl$^O*~St*`>GSjDK?c1`~CvMA$555C^F>=%$ z80029ct0Ggy&ulQ?m{%*bw_TV1L(ydzq_)YF?Z#1R^5eoS4x-IYm+^&(=_h1M%X1yo3Ny|Oi zbnpAJ?*$~*-V5eVCOv?`SYXKm34eV6PeR4YP&NXeGZ$oz@G zo}!M76df7Kd$?dn_S&-$o@B?I_`YNEH9rqbWVykNiTt#Yv2iFI?IfIH$3*J;+K!2w z7h%stHZ|EZaV*r6xM43F>*v5kmaBDOA}uzN80IL;ZE}=8dnYE2h>=dx+UO*G&dzK! z!U@hyq_?k}Sq_S57irbFu&HRZxG)oniEUXCihXUF$dw&j*(e&^1~Iq|Jlu`-;S*e$ zE8p(QoH61XS0++RfEycyVwxKpi(;3XY&FuIiFqt?XJY<8bC*@NeN2k6kI6{OV@#xG zHxFq|_F&>nUF9L>m;dI$#6cVFDJ_#H6L}Xuo{B7c%ae%>)Xz(b*?*$F#qXg@#Ex2v5g32WTUHtD!$h_k?ISINti3+0H$ppK z)(^!160>}nIP5?1mCar7mCbeala=NB$pUNqWMzl_WdDNvnMh)z{bemn{aIJEKJ#bY zQC#$wV-5>oJ<%E!Ag!tZS@q`utQ*1$0djZ|fpQ}90>vKWn*v!eEZ`wQtPsVLAQpxn z6E>098-(pua+h{&4vP6C?zLm(XuT4QYY6)W zMOg>74lj8fLUDJ_<*$TdU*_@+p)3RD@s?258AXRM?B_y0G7PuuLjKnM-7@Q&9YG#~){#Q7nA|`(DmtyRdyw z{(4tdWvi~f8mrsTl}$pgTQ^pTVp%sf7lmgGR%hl5VsIy$`Jotm#mac!?)Zk5@i)5T zl9lmY-Eoo1_^s|N21Rr%E@v5^7|T*zt@!K||c4#2~DwcIZ&xKg_w4?Ma;WOUC z^ER^wizcv)Us;Wx#_M{pNsjXCyVv>mYaxR_-IKM4`8>BL8%JLl-ofm-2(L~eH;ddj zwHI2&Hp|olw>E+j4N3^Sq``gyb2JbK1{NvPK%5Z>%o>PeVNspgRH;dZB&LNLh@_5X zUey4ol4=d?2`tgTiNI?bv?Z`i19t+;37B!jo8(wTxVLRNoNXKuR#|A?`aT2;BOlABCtV&z63thAc4SU4H5}#kwAXa zn?&Rz9g<4GqQO%HwrY@0z^cIz0-tIyoWN%qh?5KFY`X@d5txyDp~>?UvQvX`1isQ> z0)br`WE0q}K`wzk8cZSZZw*WY_6k7zzmUj29a2o-2Mt~#@RJ5}2prI$jKDz+%mfZ= zP)Xp31`8wFn8lPF)1-<*8Z=l!;DiQC37pbkIe{}8)DbwV0Vi-?gTE5Eh`>xgD6S@Q zNr$W@(4@h70?it{PvDvc;_$}7v}mx2z)cOd5V)AF4jOz-z)6GM1YA1d{L=*di-@ZZ*-OA(gP#a^Xz&XGFAWY8@X_EX z0Y42I2n1+wQf-nTP0mnAumkvBvT{Lhc&`kpu0^K!mBhW(w4+3!-coXQYf!U8pUrhoD#B0!jKz|Lw2_$OJ zk-#7gq6s8x@C1QW4Z0CXGiwq{qI69WM#E;1g{?9_W*VC4UTzCwHFQ|AI*W z6zxwWze$5+0)-l+5h&Imoj{2OLkYa3!3Y9#G#HIQm}%&B!j!*+uA~BQ*nq6>ufh`7OVcWH zzik83z1C)#){*;N4c;U0fd(50Y*GO8&t@X^I^-h)|D(ZH0^2nBl)&d2Y$vcogPjDv z)?gQbZ#CE>f!Xw(CVMGlzXm@L_*sJk1P*C%n7~mDjuAMn!3hGVH8?}y908Gk&J$_W zA(seT(V&^Ybphm!rG>yP8<5LzM_BSEJe?N#o()L%1Dj!$8oWxtOM@i@d^K1`AV2`RkK4P-O4>=n;|8*H^JUy-`2Pj;9*d}2 zlR((iwbmYi&~v)AMHP($s9tOlE=h_&;glKhwf_kKxUq6%E;41B$r24OGW}LYmS}vDDP{>-qOnCL z=Y!K_Inf}tu&PX2BDqDToEGz?HMgZSf9Zmz@t}J@SJCgKHL+F0jHaZ1M!VkLhJVUP z7>ZW9QQOnmcsnW7X~y(|NySEWO14qa+uxYhGf4T5_c9r=y*!O8NjcCTOLQ@sdIT9O zQu5#xS$=nNh|#UrGsf{=p)gXCzQZ&AXXcy95Fe2fR+S%CNC)Bu+>gk^J2qqfs(n3RIUELnhzgCuD)b;T*+|u2L zc6}6}R9TK{tCkB%B<3C$7mt6>rVSG7xmqqJ!99rg@0Z>;GrKQ3#Dt>5IGEPk_#&-! z`)awyM5rf)4(^-w%z(aBi&%8R_5bg7{9n6GUHL!tJMe$&w-J~g2@8y#=^_4NP0Q?b z-?4w?Mp60#SYW-L9t>cydi5=LhWW;djDApVt;_h7!CdQ-OmBb^W9`8G#s`C=jOr}I z_#!)sugU;#W9Xn%qkVRi@#UatM#GCy#=yZtjHp3T#@@ksxYdiYB8|-KiN@1|qxjd= z5N6!VPBjX%qPS%_WEvY^Of@*hR%c}!V}=Zp`_a6{5%;Lv_}hdgH~t=>$&LS$(B#Ii z6Pn!k4MLNf{EpD%CUe??)@iw$D9Ttf z+0EK(?91e{ew_agRr>YuSCv*;a9e2=6CWz=?ZWFyTQm70X;@P$>z1h(6yI3PRGm9# z+)!-qYtt1Q@On$76_jx0^(n1YH4R)CV)dG9Z@*QUn~LpN?yj_f3tjBxE9~veS>#B} z*s=UcW6K*Z#)-uy>sM6=RsHLi*hl8m>idfASRStGX{_m?w4S_+(#qaWP};YvI+AAe z%I0V_-0>k73TZHGfFG?(Vkvo zeKa3^7Ca2o8E@+!2fkOi?EJ}xLXDk2CGb(Zz+??Rcvv}|4tZ*4G~avJ1xKJVpLc7STA1vFBS6r zb$dR?Zn{#v)?2sLQnY&9vu_mN`z6Y|?%^#eYx@{Ljgjp~2dGhWx)bbH>hmU0<@rE2 z2;lCG;A$&!1+`Ob2;ZVwZFf9ijlEh=xTMq#-k{bEUmbwwM!PHEZrkk(`^nGI@68+c zgEN0`KeV*%_Je(@B!-_->arkEQ^Q{m!SdC?pyttrc7uwV8KygfqqsuR^eFg7se#d; zP6At43>2xn*R+EjDxj!6s10Q+>HsrU!0mWYM~v-8M>wWpPbb39O8veIsNG}R+6{hJ z^lwR8UC|Tj6kV9CQ=gIopqiMU25+f=4(afnQl0w31Eu;s2W=SdIv%?6DP_=Iyb$=^ ze(*f^o&at5xEJ6%KByYH8YezZ5^tU1yzMe*V+-sL?LesBe61fi+Flv}rDWUcGsSEP zmu*EBOk<=5W&@svlJ0yFhAZ`{m%vX2WDSE|ibjqQQzc{n90^TIeK1N4ceWX(;0v!4 zA3GXzJTO(gFnH}~Tv>B$%X6WL3GBmH~KR~%Hs|E^${Bi}16EcFsvqDaI z3u{Gr>TQ@K|vC}ADeh=_1wkroh_~^MXNG_`AbvW9ejK)@%t%GB!;>MjZ zUEVe_KwdR6+~hqYgUL$rW>L8z2tP$}!ElvPy98Y*Q4m9l(=EM6f? zS7PBa2jO`r;T?X3&M3zG3TY@l_!Ux7)c*>7P{baBjwnVPf+T18sm_CUID{*D>ml$$ z{@o#5UnSh>F!Vyv=P>j|QE?cDw1od~7gr-HifYjUKOpixM_>R3 zRUeTR)E<$Idi@67OtP7{NWSX|_m zJZdl8Ly_F0(3xVA71?qWx)VuN#NimkVRfC3K|d5F$KW{>-yV}aa5)Zrs0Rc2ykpRQ zr4`)WbBpsIC1V_ie2l+y9CA^N{2fN4`096f8AVW?gtO~l6k12>;1v|zPskykcLH}n z3ICpi=SexpX(#1a%smN1(RcVHNq64bI=tp9)XY6#QuvAjX~Eg%HfD^kSlOPgPfVaH^?cu*#KD>^4ulpP4%4OKU{(! zzOVtjc-=m5<6mC_6GrU41gX@kbF`Fr#AS#ea#4|&FM}tBPPz;UC{|yV>%Z=@?0iV0 z6eAn)4OPMyG(r-JuN%cOU3o>W_T(#a&6c7?skrm0O}Gw!xdLGXJPCL-K_nJVXo8+7 zCN;^9Y-xfRv<^4Pwq38vwll8EMk}vESM=??DjU6fRkqXf8l+IQ2~=&(HHajTNZ`OV z@F&n!f|b`Hi0mW^NW2cA1bPvecpX|3NFmVYX9##SA3Lu@S913yx7Q5_An?2d-ln{Q z;wh7I|FS&?-;jsN8#mhy+u*0Zq-c3s;Q400|Csmuzj=f4Sb0=77K_=-+QM%^A%6JfOK!^%|NJ&Qh1SX2 zavGxV$blb!M~?V=cVyNl@5q4ch~azg%EfaKy%^+o zPu4T^o}A8#dywQt$0cTM_Tahq@XW*yRW1%Sc=lbpCpUVhKjo+t{Rz)daF7TN;vK!1 zFF)|7+zU7Vl&K`#m%@A>`eS3Z`*NAwxG$UT@<8T3iNyK`@@TmFKyJd+hjGTQ?A;H ziDR*mM5ePWx6xVp98FBTA_kkJ^|49%TwK@?gs-?TalC!w!p5SAag|n;E1Q7U4OeDH zF}fuyLQ&h2iL)})jb&5kHi*t`;1TYuD}Tj}x$zxt%mpL9b7SIY32kI;VAaF z%T}X2m>9<*4<^QcyN9f@cK4LlI8P?tsjEE2`10R9nRwC0cuC9b z#l*RbpG3ted)teN1=QVJikaR_thp`TOuXdIc+0VB>%)3c?zcqlw|IgNi*+l`pDw;C zE*2|lEk(4f2hFYzi#kAwjGV#o{0q4i>(V#Qq>`&%#}wWV2ArCvpEtHV3WQ z!C2118-lTQ3vb;T*MNo3Yt1-{pb)kS#nuq^9g31rwhk|Op<%c>=kVEKn9Cf#A&h0f ze10R0#i9re$2`mU;BZ{BW&E9RHW)AOm%=fnQa&;QVJTl9!KOKjdsx+z+_MORdDlob z6Zz&y_Bo1iQS3_;5pCEnC~mf4c%9~!XtvN^X46b8)3z%BNX{y}B)xSlx!F*%9Ff%S2f zU%Ac4@6?Ry0fGFR1lATk7ZTWW&eF4(Pkk5Pw^izh zg$({&C)OI~^1M!LBz-M-7f;WHcy$tIvp5?kbVh56-7%crN+EYlUNE_uR(hP zf72k2z<+4anZO1Ox)Jz9gB}DnX^>1{vjp-R;8Y@?>5y~+Rt=sduvLS81Z*1gC-8*^ z0|{)`K)ktd%ywun1c3#~*P0BYkX;&#B=C&}uMpUyK`w#48srh!r@?pv|D}PMz?df@b^gEe^}<8CR-`wz6RR}Jk(%20cfkvD)T=GIB2kofRhH_5-@47mw;se-d%iA^Qnja`S5O)(C=4cJ>5{PLl&Odn@Zb64{J00RcpuGmp1UhKoN+4bXcLE(X z@Fb9^fe(Q$8d&^@bkih|K#~Tb1bS)^K_FR!HUv^Mh#`=s!BYg%HRwQ~uSJstBF|}% zNT8nvT?u4pkVIgB2E7Oj)F6exAPxEu$hHHExi66+c4B^>z)%e`2@Ka@5P^{zyhvb_ z0P@$pc)TRwgpalZ`9dEfEP3E3kvm_me?g>wy!I!P->g9zfkF-X5}2YvKLW)X3?T5T z27?I9(qISzasHQRGMqx>q{u`^5h&9UxdavnAb+!5h#J;WX$P_=i|v-Virh;DkiTqB zpbC~NV4<$p2vh#vxq=G3We2jpcZ4Obm*!REe$Ni1d#&9vuOs&d8vKpGM;dG(uu%a# ze>M@>qC-9-@ShrNC9q9{F9>|4!43jDHP}VqTMhOQ_+Ep35?IVXXtJL|4ruT%0>5Z* zkicOLju1Ge!Epj7G&o7%j0W`t&Jhsj&v_yZI^+_8D;hKrxGsSF1^Nbo+jbzQ;jXac zO?Wa*@_jpy?uT~ETug2jBi?_qz-vUDkPw(nz(oTK0XGfAJscO_6B@ihz*~dG1X^jZ zlt6$0bRTzgla)Lv2~X_J`dQB5GQC4 z=X7(AKmSJ%2R!2!x(nk9qvis+J6050$Hw zznRK{d2K3w8&b+YOJ$*+_w6nbU)9Q}OY?JGSTjScoYM{*(pW$;#Ns*=Ye&wt*(6NS zUpY`_M`4O-mD3;>icDY5m-(tKD~$y@;(wWle=D1Z|5g^mxA$csF5(oNgFklg6Mfm_ F{|2kp3I_lH diff --git a/build/doctrees/notebooks/DemoNotebook_ammico.doctree b/build/doctrees/notebooks/DemoNotebook_ammico.doctree index bb518200bccb674357b28667ad87d61492347109..07cca3bfe12c2e88b5dee5dbf506c50d8ea4f3e9 100644 GIT binary patch delta 544 zcmaE`j{Ctn?hVS{6;h3i(~Oc0jm^wcEKHJ3O)QNpQp}Cb4HMH$EX)mz%qBa3Uqw*S z^bfZg#WpMd;Nc^vbh|$rW2}{erJ1Fnsil#zX-bN@iJ^h9g>hPniFuldsfC4kYMOjFAKbowhtMv?6~-i-7570gnMl8sU< z%nX3;F)=bUurx?DGO{pEO-oKON-;1<0Xarzy2l-$H9U@tX#~}82Rh46m7uceV0VCx z1-ip=`wm8?W#{S%MaYya9svf19)iA{l2s-KQb)*hQ?e#1F))<&a1^DcfqAmA zQCe!6iIGvFg>kBRqDi7zYO;leWtsulF*?&d?f|Xfab!#*sD3-pS$3)fl}!h`18gkN z9gf>~FfuJWS5GKHreyI5FfjBG^yQSSGBJ=kLY|wFHBpIyp|ppiC^aoFF?ajj3rx*y E0Kmhe+5i9m diff --git a/build/html/notebooks/DemoNotebook_ammico.html b/build/html/notebooks/DemoNotebook_ammico.html index 4ce06aa..a961bdd 100644 --- a/build/html/notebooks/DemoNotebook_ammico.html +++ b/build/html/notebooks/DemoNotebook_ammico.html @@ -525,7 +525,7 @@ directly on the right next to the image. This way, the user can directly inspect

The detector modules

The different detector modules with their options are explained in more detail in this section. ## Text detector Text on the images can be extracted using the TextDetector class (text module). The text is initally extracted using the Google Cloud Vision API and then translated into English with googletrans. The translated text is cleaned of whitespace, linebreaks, and numbers using Python syntax and spaCy.

-

f1ba7d1ba5064fb7aa460928034bd861

+

e23f2c1367d84c54928d7371af487026

The user can set if the text should be further summarized, and analyzed for sentiment and named entity recognition, by setting the keyword analyse_text to True (the default is False). If set, the transformers pipeline is used for each of these tasks, with the default models as of 03/2023. Other models can be selected by setting the optional keyword model_names to a list of selected models, on for each task: model_names=["sshleifer/distilbart-cnn-12-6", "distilbert-base-uncased-finetuned-sst-2-english", "dbmdz/bert-large-cased-finetuned-conll03-english"] for summary, sentiment, and ner. To be even more specific, revision numbers can also be selected by specifying the optional keyword revision_numbers to a list of revision numbers for each model, for example revision_numbers=["a4f8f3e", "af0f99b", "f2482bf"].

Please note that for the Google Cloud Vision API (the TextDetector class) you need to set a key in order to process the images. This key is ideally set as an environment variable using for example

@@ -617,7 +617,7 @@ directly on the right next to the image. This way, the user can directly inspect

Image summary and query

The SummaryDetector can be used to generate image captions (summary) as well as visual question answering (VQA).

-

fa036d65201f4494aada615a5291bbe8

+

969159235dd7410383fd47f45887ef80

This module is based on the LAVIS library. Since the models can be quite large, an initial object is created which will load the necessary models into RAM/VRAM and then use them in the analysis. The user can specify the type of analysis to be performed using the analysis_type keyword. Setting it to summary will generate a caption (summary), questions will prepare answers (VQA) to a list of questions as set by the user, summary_and_questions will do both. Note that the desired analysis type needs to be set here in the initialization of the detector object, and not when running the analysis for each image; the same holds true for the selected model.

The implemented models are listed below.

@@ -880,7 +880,7 @@ directly on the right next to the image. This way, the user can directly inspect

Detection of faces and facial expression analysis

Faces and facial expressions are detected and analyzed using the EmotionDetector class from the faces module. Initially, it is detected if faces are present on the image using RetinaFace, followed by analysis if face masks are worn (Face-Mask-Detection). The probabilistic detection of age, gender, race, and emotions is carried out with deepface, but only if the disclosure statement has been accepted (see above).

-

4cfd07c32fef422a83e7a4a6ec889f08

+

6d2c2d860235421090e2283efcd2d00d

Depending on the features found on the image, the face detection module returns a different analysis content: If no faces are found on the image, all further steps are skipped and the result "face": "No", "multiple_faces": "No", "no_faces": 0, "wears_mask": ["No"], "age": [None], "gender": [None], "race": [None], "emotion": [None], "emotion (category)": [None] is returned. If one or several faces are found, up to three faces are analyzed if they are partially concealed by a face mask. If yes, only age and gender are detected; if no, also race, emotion, and dominant emotion are detected. In case of the latter, the output could look like this: "face": "Yes", "multiple_faces": "Yes", "no_faces": 2, "wears_mask": ["No", "No"], "age": [27, 28], "gender": ["Man", "Man"], "race": ["asian", None], "emotion": ["angry", "neutral"], "emotion (category)": ["Negative", "Neutral"], where for the two faces that are detected (given by no_faces), some of the values are returned as a list with the first item for the first (largest) face and the second item for the second (smaller) face (for example, "emotion" returns a list ["angry", "neutral"] signifying the first face expressing anger, and the second face having a neutral expression).