[pre-commit.ci] pre-commit autoupdate (#184)

* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/kynan/nbstripout: 0.6.1 → 0.7.1](https://github.com/kynan/nbstripout/compare/0.6.1...0.7.1)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Этот коммит содержится в:
pre-commit-ci[bot] 2024-02-15 13:14:24 +01:00 коммит произвёл GitHub
родитель b4aae9321c
Коммит fcb2d55740
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
7 изменённых файлов: 146 добавлений и 146 удалений

Просмотреть файл

@ -1,6 +1,6 @@
repos: repos:
- repo: https://github.com/kynan/nbstripout - repo: https://github.com/kynan/nbstripout
rev: 0.6.1 rev: 0.7.1
hooks: hooks:
- id: nbstripout - id: nbstripout
files: ".ipynb" files: ".ipynb"

Просмотреть файл

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "b25986d7", "id": "0",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Crop posts from social media posts images" "# Crop posts from social media posts images"
@ -10,7 +10,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "c8a5a491", "id": "1",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Crop posts from social media posts images, to keep import text informations from social media posts images.\n", "Crop posts from social media posts images, to keep import text informations from social media posts images.\n",
@ -20,7 +20,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "70ffb7e2", "id": "2",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -51,7 +51,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "5ae02c45", "id": "3",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -64,7 +64,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "e7b8127f", "id": "4",
"metadata": {}, "metadata": {},
"source": [ "source": [
"The cropping is carried out by finding reference images on the image to be cropped. If a reference matches a region on the image, then everything below the matched region is removed. Manually look at a reference and an example post with the code below." "The cropping is carried out by finding reference images on the image to be cropped. If a reference matches a region on the image, then everything below the matched region is removed. Manually look at a reference and an example post with the code below."
@ -73,7 +73,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "d04d0e86", "id": "5",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -96,7 +96,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "49a11f61", "id": "6",
"metadata": {}, "metadata": {},
"source": [ "source": [
"You can now crop the image and check on the way that everything looks fine. `plt_match` will plot the matches on the image and below which line content will be cropped; `plt_crop` will plot the cropped text part of the social media post with the comments removed; `plt_image` will plot the image part of the social media post if applicable." "You can now crop the image and check on the way that everything looks fine. `plt_match` will plot the matches on the image and below which line content will be cropped; `plt_crop` will plot the cropped text part of the social media post with the comments removed; `plt_image` will plot the image part of the social media post if applicable."
@ -105,7 +105,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "71850d9d", "id": "7",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -119,7 +119,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "1929e549", "id": "8",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Batch crop images from the image folder given in `crop_dir`. The cropped images will save in `save_crop_dir` folder with the same file name as the original file. The reference images with the items to match are provided in `ref_dir`.\n", "Batch crop images from the image folder given in `crop_dir`. The cropped images will save in `save_crop_dir` folder with the same file name as the original file. The reference images with the items to match are provided in `ref_dir`.\n",
@ -130,7 +130,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "eef89291", "id": "9",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [

Просмотреть файл

@ -3,7 +3,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "d2c4d40d-8aca-4024-8d19-a65c4efe825d", "id": "0",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Facial Expression recognition with DeepFace" "# Facial Expression recognition with DeepFace"
@ -12,7 +12,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "51f8888b-d1a3-4b85-a596-95c0993fa192", "id": "1",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Facial expressions can be detected using [DeepFace](https://github.com/serengil/deepface) and [RetinaFace](https://github.com/serengil/retinaface).\n", "Facial expressions can be detected using [DeepFace](https://github.com/serengil/deepface) and [RetinaFace](https://github.com/serengil/retinaface).\n",
@ -25,7 +25,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "50c1c1c7", "id": "2",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -50,7 +50,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "b21e52a5-d379-42db-aae6-f2ab9ed9a369", "id": "3",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -60,7 +60,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "a2bd2153", "id": "4",
"metadata": {}, "metadata": {},
"source": [ "source": [
"We select a subset of image files to try facial expression detection on, see the `limit` keyword. The `find_files` function finds image files within a given directory and initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis::" "We select a subset of image files to try facial expression detection on, see the `limit` keyword. The `find_files` function finds image files within a given directory and initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis::"
@ -69,7 +69,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "afe7e638-f09d-47e7-9295-1c374bd64c53", "id": "5",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -84,7 +84,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "a9372561", "id": "6",
"metadata": {}, "metadata": {},
"source": [ "source": [
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n", "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
@ -94,7 +94,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "992499ed-33f1-4425-ad5d-738cf565d175", "id": "7",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -105,7 +105,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "6f974341", "id": "8",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded." "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
@ -114,7 +114,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "6f97c7d0", "id": "9",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -125,7 +125,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "174357b1", "id": "10",
"metadata": {}, "metadata": {},
"source": [ "source": [
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file." "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
@ -134,7 +134,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "604bd257", "id": "11",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -144,7 +144,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "8373d9f8", "id": "12",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Check the dataframe:" "Check the dataframe:"
@ -153,7 +153,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "aa4b518a", "id": "13",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -163,7 +163,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "579cd59f", "id": "14",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Write the csv file - here you should provide a file path and file name for the csv file to be written." "Write the csv file - here you should provide a file path and file name for the csv file to be written."
@ -172,7 +172,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "4618decb", "id": "15",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [

Просмотреть файл

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "dcaa3da1", "id": "0",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Notebook for text extraction on image\n", "# Notebook for text extraction on image\n",
@ -28,7 +28,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "f43f327c", "id": "1",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -53,7 +53,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "cf362e60", "id": "2",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -63,7 +63,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "fddba721", "id": "3",
"metadata": {}, "metadata": {},
"source": [ "source": [
"We select a subset of image files to try the text extraction on, see the `limit` keyword. The `find_files` function finds image files within a given directory and initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis: " "We select a subset of image files to try the text extraction on, see the `limit` keyword. The `find_files` function finds image files within a given directory and initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis: "
@ -72,7 +72,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "27675810", "id": "4",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -87,7 +87,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "7b8b929f", "id": "5",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Google cloud vision API\n", "# Google cloud vision API\n",
@ -98,7 +98,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "cbf74c0b-52fe-4fb8-b617-f18611e8f986", "id": "6",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -109,7 +109,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "0891b795-c7fe-454c-a45d-45fadf788142", "id": "7",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Inspect the elements per image\n", "## Inspect the elements per image\n",
@ -120,7 +120,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "7c6ecc88", "id": "8",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -130,7 +130,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "9c3e72b5-0e57-4019-b45e-3e36a74e7f52", "id": "9",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Or directly analyze for further processing\n", "## Or directly analyze for further processing\n",
@ -140,7 +140,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "365c78b1-7ff4-4213-86fa-6a0a2d05198f", "id": "10",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -152,7 +152,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "3c063eda", "id": "11",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Convert to dataframe and write csv\n", "## Convert to dataframe and write csv\n",
@ -162,7 +162,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "5709c2cd", "id": "12",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -171,7 +171,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "ae182eb7", "id": "13",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Check the dataframe:" "Check the dataframe:"
@ -180,7 +180,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c4f05637", "id": "14",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -189,7 +189,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "eedf1e47", "id": "15",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Write the csv file - here you should provide a file path and file name for the csv file to be written." "Write the csv file - here you should provide a file path and file name for the csv file to be written."
@ -198,7 +198,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "bf6c9ddb", "id": "16",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -208,7 +208,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "4bc8ac0a", "id": "17",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Topic analysis\n", "# Topic analysis\n",
@ -217,7 +217,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "4931941b", "id": "18",
"metadata": {}, "metadata": {},
"source": [ "source": [
"BERTopic takes a list of strings as input. The more items in the list, the better for the topic modeling. If the below returns an error for `analyse_topic()`, the reason can be that your dataset is too small.\n", "BERTopic takes a list of strings as input. The more items in the list, the better for the topic modeling. If the below returns an error for `analyse_topic()`, the reason can be that your dataset is too small.\n",
@ -232,7 +232,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "a3450a61", "id": "19",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -244,7 +244,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "95667342", "id": "20",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Option 2: Read in a csv\n", "### Option 2: Read in a csv\n",
@ -254,7 +254,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "5530e436", "id": "21",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -266,7 +266,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "0b6ef6d7", "id": "22",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Access frequent topics\n", "### Access frequent topics\n",
@ -276,7 +276,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "43288cda-61bb-4ff1-a209-dcfcc4916b1f", "id": "23",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -285,7 +285,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "b3316770", "id": "24",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Get information for specific topic\n", "### Get information for specific topic\n",
@ -295,7 +295,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "db14fe03", "id": "25",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -305,7 +305,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "d10f701e", "id": "26",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Topic visualization\n", "### Topic visualization\n",
@ -315,7 +315,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "2331afe6", "id": "27",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -324,7 +324,7 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "f4eaf353", "id": "28",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Save the model\n", "### Save the model\n",
@ -334,7 +334,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "e5e8377c", "id": "29",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [

Просмотреть файл

@ -3,7 +3,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "22df2297-0629-45aa-b88c-6c61f1544db6", "id": "0",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Image Multimodal Search" "# Image Multimodal Search"
@ -12,7 +12,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "9eeeb302-296e-48dc-86c7-254aa02f2b3a", "id": "1",
"metadata": {}, "metadata": {},
"source": [ "source": [
"This notebooks shows how to carry out an image multimodal search with the [LAVIS](https://github.com/salesforce/LAVIS) library. \n", "This notebooks shows how to carry out an image multimodal search with the [LAVIS](https://github.com/salesforce/LAVIS) library. \n",
@ -25,7 +25,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "0b0a6bdf", "id": "2",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -50,7 +50,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "f10ad6c9-b1a0-4043-8c5d-ed660d77be37", "id": "3",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -62,7 +62,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "8d3fe589-ff3c-4575-b8f5-650db85596bc", "id": "4",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -78,7 +78,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "987540a8-d800-4c70-a76b-7bfabaf123fa", "id": "5",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Indexing and extracting features from images in selected folder" "## Indexing and extracting features from images in selected folder"
@ -87,7 +87,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "66d6ede4-00bc-4aeb-9a36-e52d7de33fe5", "id": "6",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First you need to select a model. You can choose one of the following models: \n", "First you need to select a model. You can choose one of the following models: \n",
@ -102,7 +102,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "7bbca1f0-d4b0-43cd-8e05-ee39d37c328e", "id": "7",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -119,7 +119,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "357828c9", "id": "8",
"metadata": {}, "metadata": {},
"source": [ "source": [
"To process the loaded images using the selected model, use the below code:" "To process the loaded images using the selected model, use the below code:"
@ -128,7 +128,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "f6f2c9b1-4a91-47cb-86b5-2c9c67e4837b", "id": "9",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -138,7 +138,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ca095404-57d0-4f5d-aeb0-38c232252b17", "id": "10",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -160,7 +160,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "9ff8a894-566b-4c4f-acca-21c50b5b1f52", "id": "11",
"metadata": {}, "metadata": {},
"source": [ "source": [
"The images are then processed and stored in a numerical representation, a tensor. These tensors do not change for the same image and same model - so if you run this analysis once, and save the tensors giving a path with the keyword `path_to_save_tensors`, a file with filename `.<Number_of_images>_<model_name>_saved_features_image.pt` will be placed there.\n", "The images are then processed and stored in a numerical representation, a tensor. These tensors do not change for the same image and same model - so if you run this analysis once, and save the tensors giving a path with the keyword `path_to_save_tensors`, a file with filename `.<Number_of_images>_<model_name>_saved_features_image.pt` will be placed there.\n",
@ -171,7 +171,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "56c6d488-f093-4661-835a-5c73a329c874", "id": "12",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -193,7 +193,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "309923c1-d6f8-4424-8fca-bde5f3a98b38", "id": "13",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Here we already processed our image folder with 5 images and the `clip_base` model. So you need just to write the name `5_clip_base_saved_features_image.pt` of the saved file that consists of tensors of all images as keyword argument for `path_to_load_tensors`. " "Here we already processed our image folder with 5 images and the `clip_base` model. So you need just to write the name `5_clip_base_saved_features_image.pt` of the saved file that consists of tensors of all images as keyword argument for `path_to_load_tensors`. "
@ -202,7 +202,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "162a52e8-6652-4897-b92e-645cab07aaef", "id": "14",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Formulate your search queries\n", "## Formulate your search queries\n",
@ -213,7 +213,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c4196a52-d01e-42e4-8674-5712f7d6f792", "id": "15",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -233,7 +233,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "8bcf3127-3dfd-4ff4-b9e7-a043099b1418", "id": "16",
"metadata": {}, "metadata": {},
"source": [ "source": [
"You can filter your results in 3 different ways:\n", "You can filter your results in 3 different ways:\n",
@ -245,7 +245,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "7f7dc52f-7ee9-4590-96b7-e0d9d3b82378", "id": "17",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -266,7 +266,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "65210ca2-b674-44bd-807a-4165e14bad74", "id": "18",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -276,7 +276,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "557473df-e2b9-4ef0-9439-3daadf6741ac", "id": "19",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -286,7 +286,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "e1cf7e46-0c2c-4fb2-b89a-ef585ccb9339", "id": "20",
"metadata": {}, "metadata": {},
"source": [ "source": [
"After launching `multimodal_search` function, the results of each query will be added to the source dictionary. " "After launching `multimodal_search` function, the results of each query will be added to the source dictionary. "
@ -295,7 +295,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c93d7e88-594d-4095-b5f2-7bf01210dc61", "id": "21",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -305,7 +305,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "cd3ee120-8561-482b-a76a-e8f996783325", "id": "22",
"metadata": {}, "metadata": {},
"source": [ "source": [
"A special function was written to present the search results conveniently. " "A special function was written to present the search results conveniently. "
@ -314,7 +314,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "4324e4fd-e9aa-4933-bb12-074d54e0c510", "id": "23",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -328,7 +328,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "0b750e9f-fe64-4028-9caf-52d7187462f1", "id": "24",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Improve the search results\n", "## Improve the search results\n",
@ -339,7 +339,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "b3af7b39-6d0d-4da3-9b8f-7dfd3f5779be", "id": "25",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -353,7 +353,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "caf1f4ae-4b37-4954-800e-7120f0419de5", "id": "26",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -372,7 +372,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "9e98c150-5fab-4251-bce7-0d8fc7b385b9", "id": "27",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Then using the same output function you can add the `itm=True` argument to output the new image order. Remember that for images querys, an error will be thrown with `itm=True` argument. You can also add the `image_gradcam_with_itm` along with `itm=True` argument to output the heat maps of the calculated images." "Then using the same output function you can add the `itm=True` argument to output the new image order. Remember that for images querys, an error will be thrown with `itm=True` argument. You can also add the `image_gradcam_with_itm` along with `itm=True` argument to output the heat maps of the calculated images."
@ -381,7 +381,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "6a829b99-5230-463a-8b11-30ffbb67fc3a", "id": "28",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -395,7 +395,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "d86ab96b-1907-4b7f-a78e-3983b516d781", "id": "29",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -406,7 +406,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "4bdbc4d4-695d-4751-ab7c-d2d98e2917d7", "id": "30",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -417,7 +417,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "6c6ddd83-bc87-48f2-a8d6-1bd3f4201ff7", "id": "31",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -430,7 +430,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "ea2675d5-604c-45e7-86d2-080b1f4559a0", "id": "32",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -441,7 +441,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "e78646d6-80be-4d3e-8123-3360957bcaa8", "id": "33",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -453,7 +453,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "05546d99-afab-4565-8f30-f14e1426abcf", "id": "34",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Write the csv file:" "Write the csv file:"
@ -462,7 +462,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "185f7dde-20dc-44d8-9ab0-de41f9b5734d", "id": "35",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },

Просмотреть файл

@ -3,7 +3,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "b25986d7", "id": "0",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Crop posts module" "# Crop posts module"
@ -12,7 +12,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "c8a5a491", "id": "1",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Crop posts from social media posts images, to keep import text informations from social media posts images.\n", "Crop posts from social media posts images, to keep import text informations from social media posts images.\n",
@ -22,7 +22,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "70ffb7e2", "id": "2",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -51,7 +51,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "5ae02c45", "id": "3",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -66,7 +66,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "e7b8127f", "id": "4",
"metadata": {}, "metadata": {},
"source": [ "source": [
"The cropping is carried out by finding reference images on the image to be cropped. If a reference matches a region on the image, then everything below the matched region is removed. Manually look at a reference and an example post with the code below." "The cropping is carried out by finding reference images on the image to be cropped. If a reference matches a region on the image, then everything below the matched region is removed. Manually look at a reference and an example post with the code below."
@ -75,7 +75,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "d04d0e86", "id": "5",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -99,7 +99,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "49a11f61", "id": "6",
"metadata": {}, "metadata": {},
"source": [ "source": [
"You can now crop the image and check on the way that everything looks fine. `plt_match` will plot the matches on the image and below which line content will be cropped; `plt_crop` will plot the cropped text part of the social media post with the comments removed; `plt_image` will plot the image part of the social media post if applicable." "You can now crop the image and check on the way that everything looks fine. `plt_match` will plot the matches on the image and below which line content will be cropped; `plt_crop` will plot the cropped text part of the social media post with the comments removed; `plt_image` will plot the image part of the social media post if applicable."
@ -108,7 +108,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "71850d9d", "id": "7",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -123,7 +123,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "1929e549", "id": "8",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Batch crop images from the image folder given in `crop_dir`. The cropped images will save in `save_crop_dir` folder with the same file name as the original file. The reference images with the items to match are provided in `ref_dir`.\n", "Batch crop images from the image folder given in `crop_dir`. The cropped images will save in `save_crop_dir` folder with the same file name as the original file. The reference images with the items to match are provided in `ref_dir`.\n",
@ -134,7 +134,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "eef89291", "id": "9",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -153,7 +153,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "b3b3c1ad", "id": "10",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []

Просмотреть файл

@ -3,7 +3,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "22df2297-0629-45aa-b88c-6c61f1544db6", "id": "0",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Multimodal search module" "# Multimodal search module"
@ -12,7 +12,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "9eeeb302-296e-48dc-86c7-254aa02f2b3a", "id": "1",
"metadata": {}, "metadata": {},
"source": [ "source": [
"This notebooks shows how to carry out an image multimodal search with the [LAVIS](https://github.com/salesforce/LAVIS) library. \n", "This notebooks shows how to carry out an image multimodal search with the [LAVIS](https://github.com/salesforce/LAVIS) library. \n",
@ -25,7 +25,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "0b0a6bdf", "id": "2",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -48,7 +48,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "9d58a23e", "id": "3",
"metadata": { "metadata": {
"nbsphinx": "hidden" "nbsphinx": "hidden"
}, },
@ -63,7 +63,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "f10ad6c9-b1a0-4043-8c5d-ed660d77be37", "id": "4",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -76,7 +76,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "8d3fe589-ff3c-4575-b8f5-650db85596bc", "id": "5",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -91,7 +91,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "a08bd3a9-e954-4a0e-ad64-6817abd3a25a", "id": "6",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -101,7 +101,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "987540a8-d800-4c70-a76b-7bfabaf123fa", "id": "7",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Indexing and extracting features from images in selected folder" "## Indexing and extracting features from images in selected folder"
@ -110,7 +110,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "66d6ede4-00bc-4aeb-9a36-e52d7de33fe5", "id": "8",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First you need to select a model. You can choose one of the following models: \n", "First you need to select a model. You can choose one of the following models: \n",
@ -125,7 +125,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "7bbca1f0-d4b0-43cd-8e05-ee39d37c328e", "id": "9",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -142,7 +142,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "357828c9", "id": "10",
"metadata": {}, "metadata": {},
"source": [ "source": [
"To process the loaded images using the selected model, use the below code:" "To process the loaded images using the selected model, use the below code:"
@ -151,7 +151,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "f6f2c9b1-4a91-47cb-86b5-2c9c67e4837b", "id": "11",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -161,7 +161,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "16603ded-078e-4362-847b-57ad76829327", "id": "12",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -171,7 +171,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "ca095404-57d0-4f5d-aeb0-38c232252b17", "id": "13",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -193,7 +193,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "f236c3b1-c3a6-471a-9fc5-ef831b675286", "id": "14",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -203,7 +203,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "9ff8a894-566b-4c4f-acca-21c50b5b1f52", "id": "15",
"metadata": {}, "metadata": {},
"source": [ "source": [
"The images are then processed and stored in a numerical representation, a tensor. These tensors do not change for the same image and same model - so if you run this analysis once, and save the tensors giving a path with the keyword `path_to_save_tensors`, a file with filename `.<Number_of_images>_<model_name>_saved_features_image.pt` will be placed there.\n", "The images are then processed and stored in a numerical representation, a tensor. These tensors do not change for the same image and same model - so if you run this analysis once, and save the tensors giving a path with the keyword `path_to_save_tensors`, a file with filename `.<Number_of_images>_<model_name>_saved_features_image.pt` will be placed there.\n",
@ -214,7 +214,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "56c6d488-f093-4661-835a-5c73a329c874", "id": "16",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -236,7 +236,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "309923c1-d6f8-4424-8fca-bde5f3a98b38", "id": "17",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Here we already processed our image folder with 5 images and the `clip_base` model. So you need just to write the name `5_clip_base_saved_features_image.pt` of the saved file that consists of tensors of all images as keyword argument for `path_to_load_tensors`. " "Here we already processed our image folder with 5 images and the `clip_base` model. So you need just to write the name `5_clip_base_saved_features_image.pt` of the saved file that consists of tensors of all images as keyword argument for `path_to_load_tensors`. "
@ -245,7 +245,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "162a52e8-6652-4897-b92e-645cab07aaef", "id": "18",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Formulate your search queries\n", "## Formulate your search queries\n",
@ -256,7 +256,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c4196a52-d01e-42e4-8674-5712f7d6f792", "id": "19",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -272,7 +272,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "8bcf3127-3dfd-4ff4-b9e7-a043099b1418", "id": "20",
"metadata": {}, "metadata": {},
"source": [ "source": [
"You can filter your results in 3 different ways:\n", "You can filter your results in 3 different ways:\n",
@ -284,7 +284,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "7f7dc52f-7ee9-4590-96b7-e0d9d3b82378", "id": "21",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -305,7 +305,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "65210ca2-b674-44bd-807a-4165e14bad74", "id": "22",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -315,7 +315,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "557473df-e2b9-4ef0-9439-3daadf6741ac", "id": "23",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -325,7 +325,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "c93d7e88-594d-4095-b5f2-7bf01210dc61", "id": "24",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -335,7 +335,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "e1cf7e46-0c2c-4fb2-b89a-ef585ccb9339", "id": "25",
"metadata": {}, "metadata": {},
"source": [ "source": [
"After launching `multimodal_search` function, the results of each query will be added to the source dictionary. " "After launching `multimodal_search` function, the results of each query will be added to the source dictionary. "
@ -344,7 +344,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "9ad74b21-6187-4a58-9ed8-fd3e80f5a4ed", "id": "26",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -356,7 +356,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "cd3ee120-8561-482b-a76a-e8f996783325", "id": "27",
"metadata": {}, "metadata": {},
"source": [ "source": [
"A special function was written to present the search results conveniently. " "A special function was written to present the search results conveniently. "
@ -365,7 +365,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "4324e4fd-e9aa-4933-bb12-074d54e0c510", "id": "28",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -379,7 +379,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "0b750e9f-fe64-4028-9caf-52d7187462f1", "id": "29",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Improve the search results\n", "## Improve the search results\n",
@ -390,7 +390,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "b3af7b39-6d0d-4da3-9b8f-7dfd3f5779be", "id": "30",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -404,7 +404,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "caf1f4ae-4b37-4954-800e-7120f0419de5", "id": "31",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -423,7 +423,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "9e98c150-5fab-4251-bce7-0d8fc7b385b9", "id": "32",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Then using the same output function you can add the `ITM=True` arguments to output the new image order. You can also add the `image_gradcam_with_itm` argument to output the heat maps of the calculated images. " "Then using the same output function you can add the `ITM=True` arguments to output the new image order. You can also add the `image_gradcam_with_itm` argument to output the heat maps of the calculated images. "
@ -432,7 +432,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "6a829b99-5230-463a-8b11-30ffbb67fc3a", "id": "33",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -446,7 +446,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "d86ab96b-1907-4b7f-a78e-3983b516d781", "id": "34",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -457,7 +457,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "4bdbc4d4-695d-4751-ab7c-d2d98e2917d7", "id": "35",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -468,7 +468,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "6c6ddd83-bc87-48f2-a8d6-1bd3f4201ff7", "id": "36",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -480,7 +480,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "ea2675d5-604c-45e7-86d2-080b1f4559a0", "id": "37",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -491,7 +491,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "e78646d6-80be-4d3e-8123-3360957bcaa8", "id": "38",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -503,7 +503,7 @@
{ {
"attachments": {}, "attachments": {},
"cell_type": "markdown", "cell_type": "markdown",
"id": "05546d99-afab-4565-8f30-f14e1426abcf", "id": "39",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Write the csv file:" "Write the csv file:"
@ -512,7 +512,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "185f7dde-20dc-44d8-9ab0-de41f9b5734d", "id": "40",
"metadata": { "metadata": {
"tags": [] "tags": []
}, },
@ -524,7 +524,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "b6a79201-7c17-496c-a6a1-b8ecfd3dd1e8", "id": "41",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []