{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Image summary and visual question answering" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n", "\n", "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n", "\n", "After that, we can import `ammico` and read in the files given a folder path." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# if running on google colab\n", "# flake8-noqa-cell\n", "import os\n", "\n", "if \"google.colab\" in str(get_ipython()):\n", " # update python version\n", " # install setuptools\n", " # %pip install setuptools==61 -qqq\n", " # install ammico\n", " %pip install git+https://github.com/ssciwr/ammico.git -qqq\n", " # mount google drive for data and API key\n", " from google.colab import drive\n", "\n", " drive.mount(\"/content/drive\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "import ammico\n", "from ammico import utils as mutils\n", "from ammico import display as mdisplay\n", "import ammico.summary as sm" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Here you need to provide the path to your google drive folder\n", "# or local folder containing the images\n", "images = mutils.find_files(\n", " path=\"/content/drive/MyDrive/misinformation-data/\",\n", " limit=10,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "mydict = mutils.initialize_dict(images)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create captions for images and directly write to csv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n", "\n", "The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "obj = sm.SummaryDetector(mydict)\n", "summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n", "# summary_model, summary_vis_processors = mutils.load_model(\"large\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "for key in mydict:\n", " mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n", " summary_model=summary_model, summary_vis_processors=summary_vis_processors\n", " )" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "Convert the dictionary of dictionarys into a dictionary with lists:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "outdict = mutils.append_data_to_dict(mydict)\n", "df = mutils.dump_df(outdict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check the dataframe:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "df.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Write the csv file:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Manually inspect the summaries\n", "\n", "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n", "\n", "`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n", "\n", "`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n", "analysis_explorer.run_server(port=8055)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate answers to free-form questions about images written in natural language. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set the list of questions as a list of strings:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "list_of_questions = [\n", " \"How many persons on the picture?\",\n", " \"Are there any politicians in the picture?\",\n", " \"Does the picture show something from medicine?\",\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Explore the analysis using the interface:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n", "analysis_explorer.run_server(port=8055)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Or directly analyze for further processing\n", "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for key in mydict:\n", " mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Convert to dataframe and write csv\n", "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "outdict2 = mutils.append_data_to_dict(mydict)\n", "df2 = mutils.dump_df(outdict2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2.head(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out2.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "vscode": { "interpreter": { "hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba" } } }, "nbformat": 4, "nbformat_minor": 4 }