import os import numpy from torch import device, cuda from lavis.models import load_model_and_preprocess import misinformation.multimodal_search as ms TEST_IMAGE_1 = "./test/data/d755771b-225e-432f-802e-fb8dc850fff7.png" TEST_IMAGE_2 = "./test/data/IMG_2746.png" TEST_IMAGE_3 = "./test/data/IMG_2750.png" TEST_IMAGE_4 = "./test/data/IMG_2805.png" TEST_IMAGE_5 = "./test/data/IMG_2806.png" TEST_IMAGE_6 = "./test/data/IMG_2807.png" TEST_IMAGE_7 = "./test/data/IMG_2808.png" TEST_IMAGE_8 = "./test/data/IMG_2809.png" TEST_IMAGE_9 = "./test/data/IMG_3755.jpg" TEST_IMAGE_10 = "./test/data/IMG_3756.jpg" TEST_IMAGE_11 = "./test/data/IMG_3757.jpg" TEST_IMAGE_12 = "./test/data/pic1.png" def test_read_img(): test_img = ms.read_img(TEST_IMAGE_2) assert numpy.array(test_img)[257][34] == [70, 66, 63] #def test_load_feature_extractor_model_blip2(): # multimodal_device = device("cuda" if cuda.is_available() else "cpu") # (model, vis_processors, txt_processors,) = ms.load_feature_extractor_model_blip2(multimodal_device) mydict = {} for img_path in images: id_ = os.path.splitext(os.path.basename(img_path))[0] mydict[id_] = {"filename": img_path} for key in mydict: mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image() keys = list(mydict.keys()) assert len(mydict) == 12 for key in keys: assert len(mydict[key]["3_non-deterministic summary"]) == 3