{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Image summary and visual question answering" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n", "\n", "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n", "\n", "After that, we can import `ammico` and read in the files given a folder path." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:03:47.867208Z", "iopub.status.busy": "2023-06-27T09:03:47.866989Z", "iopub.status.idle": "2023-06-27T09:03:47.875293Z", "shell.execute_reply": "2023-06-27T09:03:47.874718Z" } }, "outputs": [], "source": [ "# if running on google colab\n", "# flake8-noqa-cell\n", "import os\n", "\n", "if \"google.colab\" in str(get_ipython()):\n", " # update python version\n", " # install setuptools\n", " # %pip install setuptools==61 -qqq\n", " # install ammico\n", " %pip install git+https://github.com/ssciwr/ammico.git -qqq\n", " # mount google drive for data and API key\n", " from google.colab import drive\n", "\n", " drive.mount(\"/content/drive\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:03:47.878143Z", "iopub.status.busy": "2023-06-27T09:03:47.877647Z", "iopub.status.idle": "2023-06-27T09:03:58.213427Z", "shell.execute_reply": "2023-06-27T09:03:58.212816Z" }, "tags": [] }, "outputs": [], "source": [ "import ammico\n", "from ammico import utils as mutils\n", "from ammico import display as mdisplay\n", "import ammico.summary as sm" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:03:58.216430Z", "iopub.status.busy": "2023-06-27T09:03:58.215954Z", "iopub.status.idle": "2023-06-27T09:03:58.219780Z", "shell.execute_reply": "2023-06-27T09:03:58.219162Z" }, "tags": [] }, "outputs": [], "source": [ "# Here you need to provide the path to your google drive folder\n", "# or local folder containing the images\n", "images = mutils.find_files(\n", " path=\"data/\",\n", " limit=10,\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:03:58.222438Z", "iopub.status.busy": "2023-06-27T09:03:58.222102Z", "iopub.status.idle": "2023-06-27T09:03:58.225151Z", "shell.execute_reply": "2023-06-27T09:03:58.224542Z" }, "tags": [] }, "outputs": [], "source": [ "mydict = mutils.initialize_dict(images)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Create captions for images and directly write to csv" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n", "\n", "The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:03:58.228652Z", "iopub.status.busy": "2023-06-27T09:03:58.228311Z", "iopub.status.idle": "2023-06-27T09:05:07.932578Z", "shell.execute_reply": "2023-06-27T09:05:07.928904Z" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\r", " 0%| | 0.00/2.50G [00:00 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_image\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msummary_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msummary_vis_processors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_vis_processors\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[0;31mTypeError\u001b[0m: analyse_image() got an unexpected keyword argument 'summary_model'" ] } ], "source": [ "for key in mydict:\n", " mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n", " summary_model=summary_model, summary_vis_processors=summary_vis_processors\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "Convert the dictionary of dictionarys into a dictionary with lists:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:49.846542Z", "iopub.status.busy": "2023-06-27T09:05:49.845037Z", "iopub.status.idle": "2023-06-27T09:05:49.929066Z", "shell.execute_reply": "2023-06-27T09:05:49.928420Z" }, "tags": [] }, "outputs": [], "source": [ "outdict = mutils.append_data_to_dict(mydict)\n", "df = mutils.dump_df(outdict)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Check the dataframe:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:49.935760Z", "iopub.status.busy": "2023-06-27T09:05:49.935520Z", "iopub.status.idle": "2023-06-27T09:05:50.071123Z", "shell.execute_reply": "2023-06-27T09:05:50.070326Z" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filename
0data/106349S_por.png
1data/102141_2_eng.png
2data/102730_eng.png
\n", "
" ], "text/plain": [ " filename\n", "0 data/106349S_por.png\n", "1 data/102141_2_eng.png\n", "2 data/102730_eng.png" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(10)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Write the csv file:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:50.085192Z", "iopub.status.busy": "2023-06-27T09:05:50.084726Z", "iopub.status.idle": "2023-06-27T09:05:50.131221Z", "shell.execute_reply": "2023-06-27T09:05:50.130584Z" } }, "outputs": [], "source": [ "df.to_csv(\"data_out.csv\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Manually inspect the summaries\n", "\n", "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n", "\n", "`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n", "\n", "`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). " ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:50.136495Z", "iopub.status.busy": "2023-06-27T09:05:50.136136Z", "iopub.status.idle": "2023-06-27T09:05:50.168474Z", "shell.execute_reply": "2023-06-27T09:05:50.167780Z" }, "tags": [] }, "outputs": [ { "ename": "TypeError", "evalue": "__init__() got an unexpected keyword argument 'identify'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n", "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'" ] } ], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n", "analysis_explorer.run_server(port=8055)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Generate answers to free-form questions about images written in natural language. " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Set the list of questions as a list of strings:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:50.175012Z", "iopub.status.busy": "2023-06-27T09:05:50.174534Z", "iopub.status.idle": "2023-06-27T09:05:50.178293Z", "shell.execute_reply": "2023-06-27T09:05:50.177589Z" } }, "outputs": [], "source": [ "list_of_questions = [\n", " \"How many persons on the picture?\",\n", " \"Are there any politicians in the picture?\",\n", " \"Does the picture show something from medicine?\",\n", "]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Explore the analysis using the interface:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:50.183463Z", "iopub.status.busy": "2023-06-27T09:05:50.182925Z", "iopub.status.idle": "2023-06-27T09:05:50.212836Z", "shell.execute_reply": "2023-06-27T09:05:50.212044Z" } }, "outputs": [ { "ename": "TypeError", "evalue": "__init__() got an unexpected keyword argument 'identify'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n", "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'" ] } ], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n", "analysis_explorer.run_server(port=8055)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Or directly analyze for further processing\n", "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:05:50.217587Z", "iopub.status.busy": "2023-06-27T09:05:50.217229Z", "iopub.status.idle": "2023-06-27T09:07:33.102446Z", "shell.execute_reply": "2023-06-27T09:07:33.100338Z" } }, "outputs": [], "source": [ "for key in mydict:\n", " mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Convert to dataframe and write csv\n", "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:07:33.184466Z", "iopub.status.busy": "2023-06-27T09:07:33.183900Z", "iopub.status.idle": "2023-06-27T09:07:33.194912Z", "shell.execute_reply": "2023-06-27T09:07:33.194204Z" } }, "outputs": [], "source": [ "outdict2 = mutils.append_data_to_dict(mydict)\n", "df2 = mutils.dump_df(outdict2)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:07:33.199785Z", "iopub.status.busy": "2023-06-27T09:07:33.199557Z", "iopub.status.idle": "2023-06-27T09:07:33.216692Z", "shell.execute_reply": "2023-06-27T09:07:33.216036Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filenameHow many persons on the picture?Are there any politicians in the picture?Does the picture show something from medicine?
0data/106349S_por.png1yesyes
1data/102141_2_eng.png1noyes
2data/102730_eng.png2noyes
\n", "
" ], "text/plain": [ " filename How many persons on the picture? \\\n", "0 data/106349S_por.png 1 \n", "1 data/102141_2_eng.png 1 \n", "2 data/102730_eng.png 2 \n", "\n", " Are there any politicians in the picture? \\\n", "0 yes \n", "1 no \n", "2 no \n", "\n", " Does the picture show something from medicine? \n", "0 yes \n", "1 yes \n", "2 yes " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.head(10)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2023-06-27T09:07:33.222046Z", "iopub.status.busy": "2023-06-27T09:07:33.221438Z", "iopub.status.idle": "2023-06-27T09:07:33.228304Z", "shell.execute_reply": "2023-06-27T09:07:33.226867Z" } }, "outputs": [], "source": [ "df2.to_csv(\"data_out2.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.17" }, "vscode": { "interpreter": { "hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba" } } }, "nbformat": 4, "nbformat_minor": 4 }