{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Color analysis of pictures\n", "\n", "\n", "\n", "This notebook shows primary color analysis of color image using K-Means algorithm.\n", "The output are N primary colors and their corresponding percentage.\n", "\n", "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n", "\n", "After that, we can import `ammico` and read in the files given a folder path." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:36.691236Z", "iopub.status.busy": "2023-09-04T04:49:36.690967Z", "iopub.status.idle": "2023-09-04T04:49:36.700857Z", "shell.execute_reply": "2023-09-04T04:49:36.700057Z" } }, "outputs": [], "source": [ "# if running on google colab\n", "# flake8-noqa-cell\n", "import os\n", "\n", "if \"google.colab\" in str(get_ipython()):\n", " # update python version\n", " # install setuptools\n", " # %pip install setuptools==61 -qqq\n", " # install ammico\n", " %pip install git+https://github.com/ssciwr/ammico.git -qqq\n", " # mount google drive for data and API key\n", " from google.colab import drive\n", "\n", " drive.mount(\"/content/drive\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:36.704949Z", "iopub.status.busy": "2023-09-04T04:49:36.704460Z", "iopub.status.idle": "2023-09-04T04:49:49.569108Z", "shell.execute_reply": "2023-09-04T04:49:49.567973Z" } }, "outputs": [], "source": [ "import ammico\n", "from ammico import utils as mutils\n", "from ammico import display as mdisplay\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We select a subset of image files to try the color analysis on, see the `limit` keyword. The `find_files` function finds image files within a given directory:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:49.574134Z", "iopub.status.busy": "2023-09-04T04:49:49.573217Z", "iopub.status.idle": "2023-09-04T04:49:50.945532Z", "shell.execute_reply": "2023-09-04T04:49:50.944778Z" } }, "outputs": [ { "ename": "FileNotFoundError", "evalue": "No files found in /content/drive/MyDrive/misinformation-data/ with pattern '['png', 'jpg', 'jpeg', 'gif', 'webp', 'avif', 'tiff']'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[3], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Here you need to provide the path to your google drive folder\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# or local folder containing the images\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m images \u001b[38;5;241m=\u001b[39m \u001b[43mmutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfind_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/content/drive/MyDrive/misinformation-data/\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mlimit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/utils.py:134\u001b[0m, in \u001b[0;36mfind_files\u001b[0;34m(path, pattern, recursive, limit, random_seed)\u001b[0m\n\u001b[1;32m 131\u001b[0m results\u001b[38;5;241m.\u001b[39mextend(_match_pattern(path, p, recursive\u001b[38;5;241m=\u001b[39mrecursive))\n\u001b[1;32m 133\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(results) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 134\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo files found in \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m with pattern \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpattern\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m random_seed \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 137\u001b[0m random\u001b[38;5;241m.\u001b[39mseed(random_seed)\n", "\u001b[0;31mFileNotFoundError\u001b[0m: No files found in /content/drive/MyDrive/misinformation-data/ with pattern '['png', 'jpg', 'jpeg', 'gif', 'webp', 'avif', 'tiff']'" ] } ], "source": [ "# Here you need to provide the path to your google drive folder\n", "# or local folder containing the images\n", "images = mutils.find_files(\n", " path=\"/content/drive/MyDrive/misinformation-data/\",\n", " limit=10,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We need to initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:50.996839Z", "iopub.status.busy": "2023-09-04T04:49:50.996138Z", "iopub.status.idle": "2023-09-04T04:49:51.037240Z", "shell.execute_reply": "2023-09-04T04:49:51.036387Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'images' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m mydict \u001b[38;5;241m=\u001b[39m mutils\u001b[38;5;241m.\u001b[39minitialize_dict(\u001b[43mimages\u001b[49m)\n", "\u001b[0;31mNameError\u001b[0m: name 'images' is not defined" ] } ], "source": [ "mydict = mutils.initialize_dict(images)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n", "Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:51.040964Z", "iopub.status.busy": "2023-09-04T04:49:51.040535Z", "iopub.status.idle": "2023-09-04T04:49:51.080501Z", "shell.execute_reply": "2023-09-04T04:49:51.079560Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'mydict' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m mdisplay\u001b[38;5;241m.\u001b[39mAnalysisExplorer(\u001b[43mmydict\u001b[49m, identify\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolors\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m8057\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'mydict' is not defined" ] } ], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"colors\")\n", "analysis_explorer.run_server(port = 8057)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:51.085917Z", "iopub.status.busy": "2023-09-04T04:49:51.085303Z", "iopub.status.idle": "2023-09-04T04:49:51.127676Z", "shell.execute_reply": "2023-09-04T04:49:51.126768Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'mydict' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[43mmydict\u001b[49m\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[1;32m 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m ammico\u001b[38;5;241m.\u001b[39mcolors\u001b[38;5;241m.\u001b[39mColorDetector(mydict[key])\u001b[38;5;241m.\u001b[39manalyse_image()\n", "\u001b[0;31mNameError\u001b[0m: name 'mydict' is not defined" ] } ], "source": [ "for key in mydict.keys():\n", " mydict[key] = ammico.colors.ColorDetector(mydict[key]).analyse_image()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:51.131793Z", "iopub.status.busy": "2023-09-04T04:49:51.131520Z", "iopub.status.idle": "2023-09-04T04:49:51.172052Z", "shell.execute_reply": "2023-09-04T04:49:51.171284Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'mydict' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m outdict \u001b[38;5;241m=\u001b[39m mutils\u001b[38;5;241m.\u001b[39mappend_data_to_dict(\u001b[43mmydict\u001b[49m)\n\u001b[1;32m 2\u001b[0m df \u001b[38;5;241m=\u001b[39m mutils\u001b[38;5;241m.\u001b[39mdump_df(outdict)\n", "\u001b[0;31mNameError\u001b[0m: name 'mydict' is not defined" ] } ], "source": [ "outdict = mutils.append_data_to_dict(mydict)\n", "df = mutils.dump_df(outdict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check the dataframe:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:51.176060Z", "iopub.status.busy": "2023-09-04T04:49:51.175538Z", "iopub.status.idle": "2023-09-04T04:49:51.213570Z", "shell.execute_reply": "2023-09-04T04:49:51.212763Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'df' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdf\u001b[49m\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m10\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" ] } ], "source": [ "df.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Write the csv file - here you should provide a file path and file name for the csv file to be written." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-09-04T04:49:51.217692Z", "iopub.status.busy": "2023-09-04T04:49:51.217149Z", "iopub.status.idle": "2023-09-04T04:49:51.256482Z", "shell.execute_reply": "2023-09-04T04:49:51.255618Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'df' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdf\u001b[49m\u001b[38;5;241m.\u001b[39mto_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/content/drive/MyDrive/misinformation-data/data_out.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" ] } ], "source": [ "df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.17" } }, "nbformat": 4, "nbformat_minor": 2 }