import ipywidgets from IPython.display import display from deepface import DeepFace from retinaface import RetinaFace def facial_expression_analysis(img_path): result = {"filename": img_path} # Find (multiple) faces in the image and cut them faces = RetinaFace.extract_faces(img_path) # If no faces are found, we return an empty dictionary if len(faces) == 0: return result # Find the biggest face image in the detected ones maxface = max(faces, key=lambda f: f.shape[0] * f.shape[1]) # Run the full DeepFace analysis result["deepface_results"] = DeepFace.analyze( img_path=maxface, actions=["age", "gender", "race", "emotion"], prog_bar=False, detector_backend="skip", ) # We remove the region, as the data is not correct - after all we are # running the analysis on a subimage. del result["deepface_results"]["region"] return result class JSONContainer: """Expose a Python dictionary as a JSON document in JupyterLab rich display rendering. """ def __init__(self, data={}): self._data = data def _repr_json_(self): return self._data def explore_face_recognition(image_paths): # Create an image selector widget image_select = ipywidgets.Select( options=image_paths, layout=ipywidgets.Layout(width="20%"), rows=20 ) # Set up the facial recognition output widget output = ipywidgets.Output(layout=ipywidgets.Layout(width="30%")) # Set up the image selection and display widget image_widget = ipywidgets.Box( children=[], layout=ipywidgets.Layout(width="50%"), ) # Register the tab switch logic def switch(_): # Clear existing output image_widget.children = () output.clear_output() # Create the new content image_widget.children = (ipywidgets.Image.from_file(image_select.value),) # This output widget absorbes print statements that are messing with # the widget output and cannot be disabled through the API. with ipywidgets.Output(): analysis = facial_expression_analysis(image_select.value) with output: display(JSONContainer(analysis)) # Register the handler and trigger it immediately image_select.observe(switch, names=("value",), type="change") switch(None) # Show the combined widget return ipywidgets.HBox([image_select, image_widget, output])