import cv2 import numpy as np import os import pathlib import ipywidgets from tensorflow.keras.models import load_model from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from deepface import DeepFace from retinaface import RetinaFace from misinformation.utils import DownloadResource def deepface_symlink_processor(name): def _processor(fname, action, pooch): if not os.path.exists(name): os.symlink(fname, name) return fname return _processor face_mask_model = DownloadResource( url="https://github.com/chandrikadeb7/Face-Mask-Detection/raw/v1.0.0/mask_detector.model", known_hash="sha256:d0b30e2c7f8f187c143d655dee8697fcfbe8678889565670cd7314fb064eadc8", ) deepface_age_model = DownloadResource( url="https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5", known_hash="sha256:0aeff75734bfe794113756d2bfd0ac823d51e9422c8961125b570871d3c2b114", processor=deepface_symlink_processor( pathlib.Path.home().joinpath(".deepface", "weights", "age_model_weights.h5") ), ) deepface_face_expression_model = DownloadResource( url="https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5", known_hash="sha256:e8e8851d3fa05c001b1c27fd8841dfe08d7f82bb786a53ad8776725b7a1e824c", processor=deepface_symlink_processor( pathlib.Path.home().joinpath( ".deepface", "weights", "facial_expression_model_weights.h5" ) ), ) deepface_gender_model = DownloadResource( url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5", known_hash="sha256:45513ce5678549112d25ab85b1926fb65986507d49c674a3d04b2ba70dba2eb5", processor=deepface_symlink_processor( pathlib.Path.home().joinpath(".deepface", "weights", "gender_model_weights.h5") ), ) deepface_race_model = DownloadResource( url="https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5", known_hash="sha256:eb22b28b1f6dfce65b64040af4e86003a5edccb169a1a338470dde270b6f5e54", processor=deepface_symlink_processor( pathlib.Path.home().joinpath( ".deepface", "weights", "race_model_single_batch.h5" ) ), ) retinaface_model = DownloadResource( url="https://github.com/serengil/deepface_models/releases/download/v1.0/retinaface.h5", known_hash="sha256:ecb2393a89da3dd3d6796ad86660e298f62a0c8ae7578d92eb6af14e0bb93adf", processor=deepface_symlink_processor( pathlib.Path.home().joinpath(".deepface", "weights", "retinaface.h5") ), ) def facial_expression_analysis(img_path): result = {"filename": img_path} # Find (multiple) faces in the image and cut them retinaface_model.get() faces = RetinaFace.extract_faces(img_path) # If no faces are found, we return an empty dictionary if len(faces) == 0: return result # Sort the faces by sight to prioritize prominent faces faces = list(reversed(sorted(faces, key=lambda f: f.shape[0] * f.shape[1]))) def analyze_single_face(face): fresult = {} # Determine whether the face wears a mask fresult["wears_mask"] = wears_mask(face) # Adapt the features we are looking for depending on whether a mask is # worn. White masks screw race detection, emotion detection is useless. actions = ["age", "gender"] if not fresult["wears_mask"]: actions = actions + ["race", "emotion"] # Ensure that all data has been fetched by pooch deepface_age_model.get() deepface_face_expression_model.get() deepface_gender_model.get() deepface_race_model.get() # Run the full DeepFace analysis fresult["deepface_results"] = DeepFace.analyze( img_path=face, actions=actions, prog_bar=False, detector_backend="skip", ) # We remove the region, as the data is not correct - after all we are # running the analysis on a subimage. del fresult["deepface_results"]["region"] return fresult # We limit ourselves to three faces for i, face in enumerate(faces[:3]): result[f"person{ i+1 }"] = analyze_single_face(face) return result def wears_mask(face): global mask_detection_model # Preprocess the face to match the assumptions of the face mask # detection model face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) # Lazily load the model mask_detection_model = load_model(face_mask_model.get()) # Run the model (ignoring output) with NocatchOutput(): mask, withoutMask = mask_detection_model.predict(face)[0] # Convert from np.bool_ to bool to later be able to serialize the result return bool(mask > withoutMask) class NocatchOutput(ipywidgets.Output): """An output container that suppresses output, but not exceptions Taken from https://github.com/jupyter-widgets/ipywidgets/issues/3208#issuecomment-1070836153 """ def __exit__(self, *args, **kwargs): super().__exit__(*args, **kwargs)