{ "cells": [ { "cell_type": "markdown", "id": "dcaa3da1", "metadata": {}, "source": [ "# Notebook for text extraction on image\n", "Inga Ulusoy, SSC, July 2022" ] }, { "cell_type": "code", "execution_count": null, "id": "cf362e60", "metadata": {}, "outputs": [], "source": [ "import os\n", "from IPython.display import Image, display\n", "import misinformation" ] }, { "cell_type": "code", "execution_count": null, "id": "6da3a7aa", "metadata": {}, "outputs": [], "source": [ "images = misinformation.find_files(path=\"../data/images-text/\", limit=1000)" ] }, { "cell_type": "code", "execution_count": null, "id": "bf811ce0", "metadata": {}, "outputs": [], "source": [ "for i in images[0:10]:\n", " display(Image(filename=i))" ] }, { "cell_type": "code", "execution_count": null, "id": "8b32409f", "metadata": {}, "outputs": [], "source": [ "mydict = misinformation.utils.initialize_dict(images[0:10])" ] }, { "cell_type": "code", "execution_count": null, "id": "3be954ef-d31f-4e4d-857c-c14d5fda91f1", "metadata": {}, "outputs": [], "source": [ "mydict" ] }, { "cell_type": "markdown", "id": "7b8b929f", "metadata": {}, "source": [ "# google cloud vision API\n", "First 1000 images per month are free." ] }, { "cell_type": "code", "execution_count": null, "id": "cbf74c0b-52fe-4fb8-b617-f18611e8f986", "metadata": {}, "outputs": [], "source": [ "os.environ[\n", " \"GOOGLE_APPLICATION_CREDENTIALS\"\n", "] = \"../data/misinformation-campaign-981aa55a3b13.json\"" ] }, { "cell_type": "markdown", "id": "0891b795-c7fe-454c-a45d-45fadf788142", "metadata": {}, "source": [ "## Inspect the elements per image" ] }, { "cell_type": "code", "execution_count": null, "id": "7c6ecc88", "metadata": {}, "outputs": [], "source": [ "misinformation.explore_analysis(mydict, identify=\"text-on-image\")" ] }, { "cell_type": "markdown", "id": "9c3e72b5-0e57-4019-b45e-3e36a74e7f52", "metadata": {}, "source": [ "## Or directly analyze for further processing" ] }, { "cell_type": "code", "execution_count": null, "id": "365c78b1-7ff4-4213-86fa-6a0a2d05198f", "metadata": {}, "outputs": [], "source": [ "for key in mydict:\n", " print(key)\n", " mydict[key] = misinformation.text.TextDetector(mydict[key]).analyse_image()" ] }, { "cell_type": "code", "execution_count": null, "id": "c978fdb4-1f3a-4b78-b6ff-79c6e8a6fe82", "metadata": {}, "outputs": [], "source": [ "print(mydict[\"109237S_spa\"][\"text_clean\"])" ] }, { "cell_type": "markdown", "id": "3c063eda", "metadata": {}, "source": [ "## Convert to dataframe and write csv" ] }, { "cell_type": "code", "execution_count": null, "id": "5709c2cd", "metadata": {}, "outputs": [], "source": [ "outdict = misinformation.utils.append_data_to_dict(mydict)\n", "df = misinformation.utils.dump_df(outdict)" ] }, { "cell_type": "code", "execution_count": null, "id": "c4f05637", "metadata": {}, "outputs": [], "source": [ "# check the dataframe\n", "df.head(10)" ] }, { "cell_type": "code", "execution_count": null, "id": "bf6c9ddb", "metadata": {}, "outputs": [], "source": [ "# Write the csv\n", "df.to_csv(\"./data_out.csv\")" ] }, { "cell_type": "code", "execution_count": null, "id": "568537df", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.0" }, "vscode": { "interpreter": { "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a" } } }, "nbformat": 4, "nbformat_minor": 5 }