{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Image summary and visual question answering" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n", "\n", "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n", "\n", "After that, we can import `ammico` and read in the files given a folder path." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:17:55.775871Z", "iopub.status.busy": "2023-08-16T08:17:55.774778Z", "iopub.status.idle": "2023-08-16T08:17:55.787030Z", "shell.execute_reply": "2023-08-16T08:17:55.786302Z" } }, "outputs": [], "source": [ "# if running on google colab\n", "# flake8-noqa-cell\n", "import os\n", "\n", "if \"google.colab\" in str(get_ipython()):\n", " # update python version\n", " # install setuptools\n", " # %pip install setuptools==61 -qqq\n", " # install ammico\n", " %pip install git+https://github.com/ssciwr/ammico.git -qqq\n", " # mount google drive for data and API key\n", " from google.colab import drive\n", "\n", " drive.mount(\"/content/drive\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:17:55.790790Z", "iopub.status.busy": "2023-08-16T08:17:55.790274Z", "iopub.status.idle": "2023-08-16T08:18:08.881195Z", "shell.execute_reply": "2023-08-16T08:18:08.880406Z" }, "tags": [] }, "outputs": [], "source": [ "import ammico\n", "from ammico import utils as mutils\n", "from ammico import display as mdisplay\n", "import ammico.summary as sm" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:18:08.885434Z", "iopub.status.busy": "2023-08-16T08:18:08.884517Z", "iopub.status.idle": "2023-08-16T08:18:08.890596Z", "shell.execute_reply": "2023-08-16T08:18:08.889866Z" }, "tags": [] }, "outputs": [], "source": [ "# Here you need to provide the path to your google drive folder\n", "# or local folder containing the images\n", "images = mutils.find_files(\n", " path=\"data/\",\n", " limit=10,\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:18:08.894139Z", "iopub.status.busy": "2023-08-16T08:18:08.893643Z", "iopub.status.idle": "2023-08-16T08:18:08.897326Z", "shell.execute_reply": "2023-08-16T08:18:08.896510Z" }, "tags": [] }, "outputs": [], "source": [ "mydict = mutils.initialize_dict(images)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Create captions for images and directly write to csv" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n", "\n", "The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:18:08.901139Z", "iopub.status.busy": "2023-08-16T08:18:08.900636Z", "iopub.status.idle": "2023-08-16T08:18:56.282145Z", "shell.execute_reply": "2023-08-16T08:18:56.280793Z" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 46e7044b-81c7-40dd-96d4-f00f47977854)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 60a0dbec-fe0d-4c08-ab66-81694c369895)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/added_tokens.json\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: dc7187e1-ebbb-4567-af33-a6895b248a79)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/special_tokens_map.json\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 59a281a5-bebf-4eda-9a26-a35771174657)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/tokenizer_config.json\n" ] }, { "ename": "OSError", "evalue": "Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m obj \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m summary_model, summary_vis_processors \u001b[38;5;241m=\u001b[39m obj\u001b[38;5;241m.\u001b[39mload_model(model_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbase\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# summary_model, summary_vis_processors = mutils.load_model(\"large\")\u001b[39;00m\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:72\u001b[0m, in \u001b[0;36mSummaryDetector.__init__\u001b[0;34m(self, subdict, summary_model_type, analysis_type, list_of_questions, summary_model, summary_vis_processors, summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlist_of_questions \u001b[38;5;241m=\u001b[39m list_of_questions\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 68\u001b[0m (summary_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 69\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (summary_vis_processors \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 70\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (analysis_type \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquestions\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 71\u001b[0m ):\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_model, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_vis_processors \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model_type\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_model \u001b[38;5;241m=\u001b[39m summary_model\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:145\u001b[0m, in \u001b[0;36mSummaryDetector.load_model\u001b[0;34m(self, model_type)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 132\u001b[0m \u001b[38;5;124;03mLoad blip_caption model and preprocessors for visual inputs from lavis.models.\u001b[39;00m\n\u001b[1;32m 133\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;124;03m vis_processors (dict): preprocessors for visual inputs.\u001b[39;00m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 141\u001b[0m select_model \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 142\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbase\u001b[39m\u001b[38;5;124m\"\u001b[39m: SummaryDetector\u001b[38;5;241m.\u001b[39mload_model_base,\n\u001b[1;32m 143\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlarge\u001b[39m\u001b[38;5;124m\"\u001b[39m: SummaryDetector\u001b[38;5;241m.\u001b[39mload_model_large,\n\u001b[1;32m 144\u001b[0m }\n\u001b[0;32m--> 145\u001b[0m summary_model, summary_vis_processors \u001b[38;5;241m=\u001b[39m \u001b[43mselect_model\u001b[49m\u001b[43m[\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m summary_model, summary_vis_processors\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:104\u001b[0m, in \u001b[0;36mSummaryDetector.load_model_base\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_model_base\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 95\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;124;03m Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.\u001b[39;00m\n\u001b[1;32m 97\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;124;03m vis_processors (dict): preprocessors for visual inputs.\u001b[39;00m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 104\u001b[0m summary_model, summary_vis_processors, _ \u001b[38;5;241m=\u001b[39m \u001b[43mload_model_and_preprocess\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 105\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mblip_caption\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 106\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbase_coco\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 107\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 108\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msummary_device\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m summary_model, summary_vis_processors\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195\u001b[0m, in \u001b[0;36mload_model_and_preprocess\u001b[0;34m(name, model_type, is_eval, device)\u001b[0m\n\u001b[1;32m 192\u001b[0m model_cls \u001b[38;5;241m=\u001b[39m registry\u001b[38;5;241m.\u001b[39mget_model_class(name)\n\u001b[1;32m 194\u001b[0m \u001b[38;5;66;03m# load model\u001b[39;00m\n\u001b[0;32m--> 195\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mmodel_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_eval:\n\u001b[1;32m 198\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70\u001b[0m, in \u001b[0;36mBaseModel.from_pretrained\u001b[0;34m(cls, model_type)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;124;03mBuild a pretrained model from default configuration file, specified by model_type.\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;124;03m - model (nn.Module): pretrained or finetuned model, depending on the configuration.\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 69\u001b[0m model_cfg \u001b[38;5;241m=\u001b[39m OmegaConf\u001b[38;5;241m.\u001b[39mload(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mdefault_config_path(model_type))\u001b[38;5;241m.\u001b[39mmodel\n\u001b[0;32m---> 70\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_config\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_cfg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m model\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_caption.py:216\u001b[0m, in \u001b[0;36mBlipCaption.from_config\u001b[0;34m(cls, cfg)\u001b[0m\n\u001b[1;32m 213\u001b[0m prompt \u001b[38;5;241m=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprompt\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 214\u001b[0m max_txt_len \u001b[38;5;241m=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_txt_len\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;241m40\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mimage_encoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext_decoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_txt_len\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_txt_len\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m model\u001b[38;5;241m.\u001b[39mload_checkpoint_from_config(cfg)\n\u001b[1;32m 219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m model\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_caption.py:43\u001b[0m, in \u001b[0;36mBlipCaption.__init__\u001b[0;34m(self, image_encoder, text_decoder, prompt, max_txt_len)\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, image_encoder, text_decoder, prompt\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, max_txt_len\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m40\u001b[39m):\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m()\n\u001b[0;32m---> 43\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minit_tokenizer\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisual_encoder \u001b[38;5;241m=\u001b[39m image_encoder\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtext_decoder \u001b[38;5;241m=\u001b[39m text_decoder\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip.py:22\u001b[0m, in \u001b[0;36mBlipBase.init_tokenizer\u001b[0;34m(cls)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minit_tokenizer\u001b[39m(\u001b[38;5;28mcls\u001b[39m):\n\u001b[0;32m---> 22\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mBertTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbert-base-uncased\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39madd_special_tokens({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbos_token\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[DEC]\u001b[39m\u001b[38;5;124m\"\u001b[39m})\n\u001b[1;32m 24\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39madd_special_tokens({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124madditional_special_tokens\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[ENC]\u001b[39m\u001b[38;5;124m\"\u001b[39m]})\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/transformers/tokenization_utils_base.py:1788\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1782\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[1;32m 1783\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt load following files from cache: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00munresolved_files\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m and cannot check if these \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfiles are necessary for the tokenizer to operate.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1785\u001b[0m )\n\u001b[1;32m 1787\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mall\u001b[39m(full_file_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mfor\u001b[39;00m full_file_name \u001b[38;5;129;01min\u001b[39;00m resolved_vocab_files\u001b[38;5;241m.\u001b[39mvalues()):\n\u001b[0;32m-> 1788\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m(\n\u001b[1;32m 1789\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt load tokenizer for \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m. If you were trying to load it from \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1790\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://huggingface.co/models\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, make sure you don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt have a local directory with the same name. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1791\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOtherwise, make sure \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m is the correct path to a directory \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1792\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontaining all relevant files for a \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m tokenizer.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1793\u001b[0m )\n\u001b[1;32m 1795\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m file_id, file_path \u001b[38;5;129;01min\u001b[39;00m vocab_files\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 1796\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file_id \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m resolved_vocab_files:\n", "\u001b[0;31mOSError\u001b[0m: Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer." ] } ], "source": [ "obj = sm.SummaryDetector(mydict)\n", "summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n", "# summary_model, summary_vis_processors = mutils.load_model(\"large\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:18:56.287693Z", "iopub.status.busy": "2023-08-16T08:18:56.287116Z", "iopub.status.idle": "2023-08-16T08:19:42.077722Z", "shell.execute_reply": "2023-08-16T08:19:42.076650Z" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 24f208f6-43d7-47b6-8107-73577c6b2438)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: fd6ca06d-4f6b-47bb-8cf4-948c3ca85a08)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/added_tokens.json\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 8c8fd2ef-98fd-4aa6-8695-7ce208b547de)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/special_tokens_map.json\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 03ed1cf4-5e3e-4f84-a85d-019584a19d86)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/tokenizer_config.json\n" ] }, { "ename": "OSError", "evalue": "Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39manalyse_image(\n\u001b[1;32m 3\u001b[0m summary_model\u001b[38;5;241m=\u001b[39msummary_model, summary_vis_processors\u001b[38;5;241m=\u001b[39msummary_vis_processors\n\u001b[1;32m 4\u001b[0m )\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:72\u001b[0m, in \u001b[0;36mSummaryDetector.__init__\u001b[0;34m(self, subdict, summary_model_type, analysis_type, list_of_questions, summary_model, summary_vis_processors, summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlist_of_questions \u001b[38;5;241m=\u001b[39m list_of_questions\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 68\u001b[0m (summary_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 69\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (summary_vis_processors \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 70\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (analysis_type \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquestions\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 71\u001b[0m ):\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_model, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_vis_processors \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model_type\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_model \u001b[38;5;241m=\u001b[39m summary_model\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:145\u001b[0m, in \u001b[0;36mSummaryDetector.load_model\u001b[0;34m(self, model_type)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 132\u001b[0m \u001b[38;5;124;03mLoad blip_caption model and preprocessors for visual inputs from lavis.models.\u001b[39;00m\n\u001b[1;32m 133\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;124;03m vis_processors (dict): preprocessors for visual inputs.\u001b[39;00m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 141\u001b[0m select_model \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 142\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbase\u001b[39m\u001b[38;5;124m\"\u001b[39m: SummaryDetector\u001b[38;5;241m.\u001b[39mload_model_base,\n\u001b[1;32m 143\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlarge\u001b[39m\u001b[38;5;124m\"\u001b[39m: SummaryDetector\u001b[38;5;241m.\u001b[39mload_model_large,\n\u001b[1;32m 144\u001b[0m }\n\u001b[0;32m--> 145\u001b[0m summary_model, summary_vis_processors \u001b[38;5;241m=\u001b[39m \u001b[43mselect_model\u001b[49m\u001b[43m[\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m summary_model, summary_vis_processors\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:104\u001b[0m, in \u001b[0;36mSummaryDetector.load_model_base\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_model_base\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 95\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;124;03m Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.\u001b[39;00m\n\u001b[1;32m 97\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;124;03m vis_processors (dict): preprocessors for visual inputs.\u001b[39;00m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 104\u001b[0m summary_model, summary_vis_processors, _ \u001b[38;5;241m=\u001b[39m \u001b[43mload_model_and_preprocess\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 105\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mblip_caption\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 106\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbase_coco\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 107\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 108\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msummary_device\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m summary_model, summary_vis_processors\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195\u001b[0m, in \u001b[0;36mload_model_and_preprocess\u001b[0;34m(name, model_type, is_eval, device)\u001b[0m\n\u001b[1;32m 192\u001b[0m model_cls \u001b[38;5;241m=\u001b[39m registry\u001b[38;5;241m.\u001b[39mget_model_class(name)\n\u001b[1;32m 194\u001b[0m \u001b[38;5;66;03m# load model\u001b[39;00m\n\u001b[0;32m--> 195\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mmodel_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_eval:\n\u001b[1;32m 198\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70\u001b[0m, in \u001b[0;36mBaseModel.from_pretrained\u001b[0;34m(cls, model_type)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;124;03mBuild a pretrained model from default configuration file, specified by model_type.\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;124;03m - model (nn.Module): pretrained or finetuned model, depending on the configuration.\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 69\u001b[0m model_cfg \u001b[38;5;241m=\u001b[39m OmegaConf\u001b[38;5;241m.\u001b[39mload(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mdefault_config_path(model_type))\u001b[38;5;241m.\u001b[39mmodel\n\u001b[0;32m---> 70\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_config\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_cfg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m model\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_caption.py:216\u001b[0m, in \u001b[0;36mBlipCaption.from_config\u001b[0;34m(cls, cfg)\u001b[0m\n\u001b[1;32m 213\u001b[0m prompt \u001b[38;5;241m=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprompt\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 214\u001b[0m max_txt_len \u001b[38;5;241m=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_txt_len\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;241m40\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mimage_encoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext_decoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_txt_len\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_txt_len\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m model\u001b[38;5;241m.\u001b[39mload_checkpoint_from_config(cfg)\n\u001b[1;32m 219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m model\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_caption.py:43\u001b[0m, in \u001b[0;36mBlipCaption.__init__\u001b[0;34m(self, image_encoder, text_decoder, prompt, max_txt_len)\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, image_encoder, text_decoder, prompt\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, max_txt_len\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m40\u001b[39m):\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m()\n\u001b[0;32m---> 43\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minit_tokenizer\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisual_encoder \u001b[38;5;241m=\u001b[39m image_encoder\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtext_decoder \u001b[38;5;241m=\u001b[39m text_decoder\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip.py:22\u001b[0m, in \u001b[0;36mBlipBase.init_tokenizer\u001b[0;34m(cls)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minit_tokenizer\u001b[39m(\u001b[38;5;28mcls\u001b[39m):\n\u001b[0;32m---> 22\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mBertTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbert-base-uncased\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39madd_special_tokens({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbos_token\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[DEC]\u001b[39m\u001b[38;5;124m\"\u001b[39m})\n\u001b[1;32m 24\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39madd_special_tokens({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124madditional_special_tokens\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[ENC]\u001b[39m\u001b[38;5;124m\"\u001b[39m]})\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/transformers/tokenization_utils_base.py:1788\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1782\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[1;32m 1783\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt load following files from cache: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00munresolved_files\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m and cannot check if these \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfiles are necessary for the tokenizer to operate.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1785\u001b[0m )\n\u001b[1;32m 1787\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mall\u001b[39m(full_file_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mfor\u001b[39;00m full_file_name \u001b[38;5;129;01min\u001b[39;00m resolved_vocab_files\u001b[38;5;241m.\u001b[39mvalues()):\n\u001b[0;32m-> 1788\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m(\n\u001b[1;32m 1789\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt load tokenizer for \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m. If you were trying to load it from \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1790\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://huggingface.co/models\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, make sure you don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt have a local directory with the same name. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1791\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOtherwise, make sure \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m is the correct path to a directory \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1792\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontaining all relevant files for a \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m tokenizer.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1793\u001b[0m )\n\u001b[1;32m 1795\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m file_id, file_path \u001b[38;5;129;01min\u001b[39;00m vocab_files\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 1796\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file_id \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m resolved_vocab_files:\n", "\u001b[0;31mOSError\u001b[0m: Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer." ] } ], "source": [ "for key in mydict:\n", " mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n", " summary_model=summary_model, summary_vis_processors=summary_vis_processors\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "Convert the dictionary of dictionarys into a dictionary with lists:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.081783Z", "iopub.status.busy": "2023-08-16T08:19:42.081187Z", "iopub.status.idle": "2023-08-16T08:19:42.086886Z", "shell.execute_reply": "2023-08-16T08:19:42.086091Z" }, "tags": [] }, "outputs": [], "source": [ "outdict = mutils.append_data_to_dict(mydict)\n", "df = mutils.dump_df(outdict)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Check the dataframe:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.090468Z", "iopub.status.busy": "2023-08-16T08:19:42.090027Z", "iopub.status.idle": "2023-08-16T08:19:42.103920Z", "shell.execute_reply": "2023-08-16T08:19:42.103167Z" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filename
0data/102730_eng.png
1data/102141_2_eng.png
2data/106349S_por.png
\n", "
" ], "text/plain": [ " filename\n", "0 data/102730_eng.png\n", "1 data/102141_2_eng.png\n", "2 data/106349S_por.png" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(10)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Write the csv file:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.107564Z", "iopub.status.busy": "2023-08-16T08:19:42.107039Z", "iopub.status.idle": "2023-08-16T08:19:42.113075Z", "shell.execute_reply": "2023-08-16T08:19:42.112369Z" } }, "outputs": [], "source": [ "df.to_csv(\"data_out.csv\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Manually inspect the summaries\n", "\n", "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n", "\n", "`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n", "\n", "`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). " ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.116597Z", "iopub.status.busy": "2023-08-16T08:19:42.116084Z", "iopub.status.idle": "2023-08-16T08:19:42.161738Z", "shell.execute_reply": "2023-08-16T08:19:42.160695Z" }, "tags": [] }, "outputs": [ { "ename": "TypeError", "evalue": "__init__() got an unexpected keyword argument 'identify'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n", "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'" ] } ], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n", "analysis_explorer.run_server(port=8055)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Generate answers to free-form questions about images written in natural language. " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Set the list of questions as a list of strings:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.166650Z", "iopub.status.busy": "2023-08-16T08:19:42.166100Z", "iopub.status.idle": "2023-08-16T08:19:42.170133Z", "shell.execute_reply": "2023-08-16T08:19:42.169322Z" } }, "outputs": [], "source": [ "list_of_questions = [\n", " \"How many persons on the picture?\",\n", " \"Are there any politicians in the picture?\",\n", " \"Does the picture show something from medicine?\",\n", "]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Explore the analysis using the interface:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.173965Z", "iopub.status.busy": "2023-08-16T08:19:42.173452Z", "iopub.status.idle": "2023-08-16T08:19:42.216389Z", "shell.execute_reply": "2023-08-16T08:19:42.215383Z" } }, "outputs": [ { "ename": "TypeError", "evalue": "__init__() got an unexpected keyword argument 'identify'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n", "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'" ] } ], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n", "analysis_explorer.run_server(port=8055)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Or directly analyze for further processing\n", "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:19:42.221098Z", "iopub.status.busy": "2023-08-16T08:19:42.220813Z", "iopub.status.idle": "2023-08-16T08:20:28.368650Z", "shell.execute_reply": "2023-08-16T08:20:28.367041Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: fea2d868-d5bc-417d-9e00-4db1e10f2a39)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: f0ccba03-f0e5-43ae-be4b-91ed53e31894)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/added_tokens.json\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b28cdc86-997c-466d-ad54-a6022a60c715)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/special_tokens_map.json\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 115b5242-dca3-428c-a002-00eadbc77c47)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/tokenizer_config.json\n" ] }, { "ename": "OSError", "evalue": "Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[13], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39manalyse_questions(list_of_questions)\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:72\u001b[0m, in \u001b[0;36mSummaryDetector.__init__\u001b[0;34m(self, subdict, summary_model_type, analysis_type, list_of_questions, summary_model, summary_vis_processors, summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlist_of_questions \u001b[38;5;241m=\u001b[39m list_of_questions\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 68\u001b[0m (summary_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 69\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (summary_vis_processors \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 70\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (analysis_type \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquestions\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 71\u001b[0m ):\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_model, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_vis_processors \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model_type\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_model \u001b[38;5;241m=\u001b[39m summary_model\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:145\u001b[0m, in \u001b[0;36mSummaryDetector.load_model\u001b[0;34m(self, model_type)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 132\u001b[0m \u001b[38;5;124;03mLoad blip_caption model and preprocessors for visual inputs from lavis.models.\u001b[39;00m\n\u001b[1;32m 133\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;124;03m vis_processors (dict): preprocessors for visual inputs.\u001b[39;00m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 141\u001b[0m select_model \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 142\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbase\u001b[39m\u001b[38;5;124m\"\u001b[39m: SummaryDetector\u001b[38;5;241m.\u001b[39mload_model_base,\n\u001b[1;32m 143\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlarge\u001b[39m\u001b[38;5;124m\"\u001b[39m: SummaryDetector\u001b[38;5;241m.\u001b[39mload_model_large,\n\u001b[1;32m 144\u001b[0m }\n\u001b[0;32m--> 145\u001b[0m summary_model, summary_vis_processors \u001b[38;5;241m=\u001b[39m \u001b[43mselect_model\u001b[49m\u001b[43m[\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m summary_model, summary_vis_processors\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:104\u001b[0m, in \u001b[0;36mSummaryDetector.load_model_base\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_model_base\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 95\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;124;03m Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.\u001b[39;00m\n\u001b[1;32m 97\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;124;03m vis_processors (dict): preprocessors for visual inputs.\u001b[39;00m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 104\u001b[0m summary_model, summary_vis_processors, _ \u001b[38;5;241m=\u001b[39m \u001b[43mload_model_and_preprocess\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 105\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mblip_caption\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 106\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbase_coco\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 107\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 108\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msummary_device\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m summary_model, summary_vis_processors\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/__init__.py:195\u001b[0m, in \u001b[0;36mload_model_and_preprocess\u001b[0;34m(name, model_type, is_eval, device)\u001b[0m\n\u001b[1;32m 192\u001b[0m model_cls \u001b[38;5;241m=\u001b[39m registry\u001b[38;5;241m.\u001b[39mget_model_class(name)\n\u001b[1;32m 194\u001b[0m \u001b[38;5;66;03m# load model\u001b[39;00m\n\u001b[0;32m--> 195\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mmodel_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_eval:\n\u001b[1;32m 198\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/base_model.py:70\u001b[0m, in \u001b[0;36mBaseModel.from_pretrained\u001b[0;34m(cls, model_type)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;124;03mBuild a pretrained model from default configuration file, specified by model_type.\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;124;03m - model (nn.Module): pretrained or finetuned model, depending on the configuration.\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 69\u001b[0m model_cfg \u001b[38;5;241m=\u001b[39m OmegaConf\u001b[38;5;241m.\u001b[39mload(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mdefault_config_path(model_type))\u001b[38;5;241m.\u001b[39mmodel\n\u001b[0;32m---> 70\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_config\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_cfg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m model\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_caption.py:216\u001b[0m, in \u001b[0;36mBlipCaption.from_config\u001b[0;34m(cls, cfg)\u001b[0m\n\u001b[1;32m 213\u001b[0m prompt \u001b[38;5;241m=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprompt\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 214\u001b[0m max_txt_len \u001b[38;5;241m=\u001b[39m cfg\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_txt_len\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;241m40\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mimage_encoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext_decoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_txt_len\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_txt_len\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m model\u001b[38;5;241m.\u001b[39mload_checkpoint_from_config(cfg)\n\u001b[1;32m 219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m model\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip_caption.py:43\u001b[0m, in \u001b[0;36mBlipCaption.__init__\u001b[0;34m(self, image_encoder, text_decoder, prompt, max_txt_len)\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, image_encoder, text_decoder, prompt\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, max_txt_len\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m40\u001b[39m):\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m()\n\u001b[0;32m---> 43\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minit_tokenizer\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisual_encoder \u001b[38;5;241m=\u001b[39m image_encoder\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtext_decoder \u001b[38;5;241m=\u001b[39m text_decoder\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/lavis/models/blip_models/blip.py:22\u001b[0m, in \u001b[0;36mBlipBase.init_tokenizer\u001b[0;34m(cls)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minit_tokenizer\u001b[39m(\u001b[38;5;28mcls\u001b[39m):\n\u001b[0;32m---> 22\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mBertTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbert-base-uncased\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39madd_special_tokens({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbos_token\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[DEC]\u001b[39m\u001b[38;5;124m\"\u001b[39m})\n\u001b[1;32m 24\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39madd_special_tokens({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124madditional_special_tokens\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[ENC]\u001b[39m\u001b[38;5;124m\"\u001b[39m]})\n", "File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/transformers/tokenization_utils_base.py:1788\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1782\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[1;32m 1783\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt load following files from cache: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00munresolved_files\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m and cannot check if these \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfiles are necessary for the tokenizer to operate.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1785\u001b[0m )\n\u001b[1;32m 1787\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mall\u001b[39m(full_file_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mfor\u001b[39;00m full_file_name \u001b[38;5;129;01min\u001b[39;00m resolved_vocab_files\u001b[38;5;241m.\u001b[39mvalues()):\n\u001b[0;32m-> 1788\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m(\n\u001b[1;32m 1789\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt load tokenizer for \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m. If you were trying to load it from \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1790\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://huggingface.co/models\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, make sure you don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt have a local directory with the same name. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1791\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOtherwise, make sure \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpretrained_model_name_or_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m is the correct path to a directory \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1792\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontaining all relevant files for a \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m tokenizer.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1793\u001b[0m )\n\u001b[1;32m 1795\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m file_id, file_path \u001b[38;5;129;01min\u001b[39;00m vocab_files\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 1796\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file_id \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m resolved_vocab_files:\n", "\u001b[0;31mOSError\u001b[0m: Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer." ] } ], "source": [ "for key in mydict:\n", " mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Convert to dataframe and write csv\n", "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:20:28.373313Z", "iopub.status.busy": "2023-08-16T08:20:28.372714Z", "iopub.status.idle": "2023-08-16T08:20:28.377439Z", "shell.execute_reply": "2023-08-16T08:20:28.376588Z" } }, "outputs": [], "source": [ "outdict2 = mutils.append_data_to_dict(mydict)\n", "df2 = mutils.dump_df(outdict2)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:20:28.381355Z", "iopub.status.busy": "2023-08-16T08:20:28.380897Z", "iopub.status.idle": "2023-08-16T08:20:28.388838Z", "shell.execute_reply": "2023-08-16T08:20:28.388009Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filename
0data/102730_eng.png
1data/102141_2_eng.png
2data/106349S_por.png
\n", "
" ], "text/plain": [ " filename\n", "0 data/102730_eng.png\n", "1 data/102141_2_eng.png\n", "2 data/106349S_por.png" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.head(10)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2023-08-16T08:20:28.393391Z", "iopub.status.busy": "2023-08-16T08:20:28.392929Z", "iopub.status.idle": "2023-08-16T08:20:28.397857Z", "shell.execute_reply": "2023-08-16T08:20:28.397054Z" } }, "outputs": [], "source": [ "df2.to_csv(\"data_out2.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.17" }, "vscode": { "interpreter": { "hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba" } } }, "nbformat": 4, "nbformat_minor": 4 }