{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Color analysis of pictures\n", "\n", "\n", "\n", "This notebook shows primary color analysis of color image using K-Means algorithm.\n", "The output are N primary colors and their corresponding percentage.\n", "\n", "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n", "\n", "After that, we can import `ammico` and read in the files given a folder path." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:06:51.157185Z", "iopub.status.busy": "2023-06-22T12:06:51.156533Z", "iopub.status.idle": "2023-06-22T12:06:51.165679Z", "shell.execute_reply": "2023-06-22T12:06:51.165046Z" } }, "outputs": [], "source": [ "# if running on google colab\n", "# flake8-noqa-cell\n", "import os\n", "\n", "if \"google.colab\" in str(get_ipython()):\n", " # update python version\n", " # install setuptools\n", " # %pip install setuptools==61 -qqq\n", " # install ammico\n", " %pip install git+https://github.com/ssciwr/ammico.git -qqq\n", " # mount google drive for data and API key\n", " from google.colab import drive\n", "\n", " drive.mount(\"/content/drive\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:06:51.168990Z", "iopub.status.busy": "2023-06-22T12:06:51.168555Z", "iopub.status.idle": "2023-06-22T12:07:02.844083Z", "shell.execute_reply": "2023-06-22T12:07:02.843367Z" } }, "outputs": [], "source": [ "import ammico\n", "from ammico import utils as mutils\n", "from ammico import display as mdisplay\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We select a subset of image files to try the color analysis on, see the `limit` keyword. The `find_files` function finds image files within a given directory:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:02.848332Z", "iopub.status.busy": "2023-06-22T12:07:02.847598Z", "iopub.status.idle": "2023-06-22T12:07:02.851965Z", "shell.execute_reply": "2023-06-22T12:07:02.851262Z" } }, "outputs": [], "source": [ "# Here you need to provide the path to your google drive folder\n", "# or local folder containing the images\n", "images = mutils.find_files(\n", " path=\"/content/drive/MyDrive/misinformation-data/\",\n", " limit=10,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We need to initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:02.855341Z", "iopub.status.busy": "2023-06-22T12:07:02.855106Z", "iopub.status.idle": "2023-06-22T12:07:02.858208Z", "shell.execute_reply": "2023-06-22T12:07:02.857509Z" } }, "outputs": [], "source": [ "mydict = mutils.initialize_dict(images)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n", "Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:02.861441Z", "iopub.status.busy": "2023-06-22T12:07:02.861207Z", "iopub.status.idle": "2023-06-22T12:07:02.894620Z", "shell.execute_reply": "2023-06-22T12:07:02.893951Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dash is running on http://127.0.0.1:8057/\n", "\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"colors\")\n", "analysis_explorer.run_server(port = 8057)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:03.390903Z", "iopub.status.busy": "2023-06-22T12:07:03.390288Z", "iopub.status.idle": "2023-06-22T12:07:03.394359Z", "shell.execute_reply": "2023-06-22T12:07:03.393589Z" } }, "outputs": [], "source": [ "for key in mydict.keys():\n", " mydict[key] = ammico.colors.ColorDetector(mydict[key]).analyse_image()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:03.398008Z", "iopub.status.busy": "2023-06-22T12:07:03.397345Z", "iopub.status.idle": "2023-06-22T12:07:04.583139Z", "shell.execute_reply": "2023-06-22T12:07:04.582297Z" } }, "outputs": [ { "ename": "IndexError", "evalue": "list index out of range", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m outdict \u001b[38;5;241m=\u001b[39m \u001b[43mmutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mappend_data_to_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m df \u001b[38;5;241m=\u001b[39m mutils\u001b[38;5;241m.\u001b[39mdump_df(outdict)\n", "File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/utils.py:92\u001b[0m, in \u001b[0;36mappend_data_to_dict\u001b[0;34m(mydict)\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Append entries from nested dictionaries to keys in a global dict.\"\"\"\u001b[39;00m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;66;03m# first initialize empty list for each key that is present\u001b[39;00m\n\u001b[0;32m---> 92\u001b[0m outdict \u001b[38;5;241m=\u001b[39m {key: [] \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39mkeys()}\n\u001b[1;32m 93\u001b[0m \u001b[38;5;66;03m# now append the values to each key in a list\u001b[39;00m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m subdict \u001b[38;5;129;01min\u001b[39;00m mydict\u001b[38;5;241m.\u001b[39mvalues():\n", "\u001b[0;31mIndexError\u001b[0m: list index out of range" ] } ], "source": [ "outdict = mutils.append_data_to_dict(mydict)\n", "df = mutils.dump_df(outdict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check the dataframe:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:04.586954Z", "iopub.status.busy": "2023-06-22T12:07:04.586692Z", "iopub.status.idle": "2023-06-22T12:07:04.625945Z", "shell.execute_reply": "2023-06-22T12:07:04.625122Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'df' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdf\u001b[49m\u001b[38;5;241m.\u001b[39mhead(\u001b[38;5;241m10\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" ] } ], "source": [ "df.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Write the csv file - here you should provide a file path and file name for the csv file to be written." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-06-22T12:07:04.629298Z", "iopub.status.busy": "2023-06-22T12:07:04.628858Z", "iopub.status.idle": "2023-06-22T12:07:04.668480Z", "shell.execute_reply": "2023-06-22T12:07:04.667619Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'df' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdf\u001b[49m\u001b[38;5;241m.\u001b[39mto_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/content/drive/MyDrive/misinformation-data/data_out.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" ] } ], "source": [ "df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.17" } }, "nbformat": 4, "nbformat_minor": 2 }