from PIL import Image import numpy from torch import device, cuda, no_grad from lavis.models import load_model_and_preprocess import misinformation.multimodal_search as ms TEST_IMAGE_1 = "./test/data/d755771b-225e-432f-802e-fb8dc850fff7.png" TEST_IMAGE_2 = "./test/data/IMG_2746.png" TEST_IMAGE_3 = "./test/data/IMG_2750.png" TEST_IMAGE_4 = "./test/data/IMG_2805.png" TEST_IMAGE_5 = "./test/data/IMG_2806.png" TEST_IMAGE_6 = "./test/data/IMG_2807.png" TEST_IMAGE_7 = "./test/data/IMG_2808.png" TEST_IMAGE_8 = "./test/data/IMG_2809.png" TEST_IMAGE_9 = "./test/data/IMG_3755.jpg" TEST_IMAGE_10 = "./test/data/IMG_3756.jpg" TEST_IMAGE_11 = "./test/data/IMG_3757.jpg" TEST_IMAGE_12 = "./test/data/pic1.png" def test_read_img(): my_dict = {} test_img = ms.MultimodalSearch.read_img(my_dict, TEST_IMAGE_2) assert list(numpy.array(test_img)[257][34]) == [70, 66, 63] def test_load_feature_extractor_model_blip2(): my_dict = {} multimodal_device = device("cuda" if cuda.is_available() else "cpu") ( model, vis_processor, txt_processor, ) = ms.MultimodalSearch.load_feature_extractor_model_blip2( my_dict, multimodal_device ) test_pic = Image.open(TEST_IMAGE_2).convert("RGB") test_querry = ( "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device) processed_text = txt_processor["eval"](test_querry) with no_grad(): with cuda.amp.autocast(enabled=(device != device("cpu"))): extracted_feature_img = model.extract_features( {"image": processed_pic, "text_input": ""}, mode="image" ) extracted_feature_text = model.extract_features( {"image": "", "text_input": processed_text}, mode="text" ) assert processed_pic[0, 0, 0, 25:35].tolist() == [ -1.0039474964141846, -1.0039474964141846, -0.8433647751808167, -0.6097899675369263, -0.5951915383338928, -0.6243883967399597, -0.6827820539474487, -0.6097899675369263, -0.7119789123535156, -1.0623412132263184, ] assert ( processed_text == "the bird sat on a tree located at the intersection of 23rd and 43rd streets" ) assert extracted_feature_img["image_embeds_proj"][0, 0, 10:20].tolist() == [ 0.04566730558872223, -0.042554520070552826, -0.06970272958278656, -0.009771779179573059, 0.01446065679192543, 0.10173682868480682, 0.007092420011758804, -0.020045937970280647, 0.12923966348171234, 0.006452132016420364, ] assert extracted_feature_text["text_embeds_proj"][0, 0, 10:20].tolist() == [ -0.1384519338607788, -0.008663734421133995, 0.006240826100111008, 0.031466349959373474, 0.060625165700912476, -0.03230545297265053, 0.01585903950035572, -0.11856520175933838, -0.05823372304439545, 0.036941494792699814, ] del model, vis_processor, txt_processor cuda.empty_cache() def test_load_feature_extractor_model_blip(): my_dict = {} multimodal_device = device("cuda" if cuda.is_available() else "cpu") ( model, vis_processor, txt_processor, ) = ms.MultimodalSearch.load_feature_extractor_model_blip( my_dict, multimodal_device ) test_pic = Image.open(TEST_IMAGE_2).convert("RGB") test_querry = ( "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device) processed_text = txt_processor["eval"](test_querry) with no_grad(): extracted_feature_img = model.extract_features( {"image": processed_pic, "text_input": ""}, mode="image" ) extracted_feature_text = model.extract_features( {"image": "", "text_input": processed_text}, mode="text" ) assert processed_pic[0, 0, 0, 25:35].tolist() == [ -1.0039474964141846, -1.0039474964141846, -0.8433647751808167, -0.6097899675369263, -0.5951915383338928, -0.6243883967399597, -0.6827820539474487, -0.6097899675369263, -0.7119789123535156, -1.0623412132263184, ] assert ( processed_text == "the bird sat on a tree located at the intersection of 23rd and 43rd streets" ) assert extracted_feature_img["image_embeds_proj"][0, 0, 10:20].tolist() == [ -0.02480311505496502, 0.05037587881088257, 0.039517853409051895, -0.06994109600782394, -0.12886561453342438, 0.047039758414030075, -0.11620642244815826, -0.003398326924070716, -0.07324369996786118, 0.06994668394327164, ] assert extracted_feature_text["text_embeds_proj"][0, 0, 10:20].tolist() == [ 0.0118643119931221, -0.01291718054562807, -0.0009687161073088646, 0.01428765058517456, -0.05591396614909172, 0.07386433333158493, -0.11475936323404312, 0.01620068959891796, 0.0062415082938969135, 0.0034833091776818037, ] del model, vis_processor, txt_processor cuda.empty_cache() def test_load_feature_extractor_model_albef(): my_dict = {} multimodal_device = device("cuda" if cuda.is_available() else "cpu") ( model, vis_processor, txt_processor, ) = ms.MultimodalSearch.load_feature_extractor_model_albef( my_dict, multimodal_device ) test_pic = Image.open(TEST_IMAGE_2).convert("RGB") test_querry = ( "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device) processed_text = txt_processor["eval"](test_querry) with no_grad(): extracted_feature_img = model.extract_features( {"image": processed_pic, "text_input": ""}, mode="image" ) extracted_feature_text = model.extract_features( {"image": "", "text_input": processed_text}, mode="text" ) assert processed_pic[0, 0, 0, 25:35].tolist() == [ -1.0039474964141846, -1.0039474964141846, -0.8433647751808167, -0.6097899675369263, -0.5951915383338928, -0.6243883967399597, -0.6827820539474487, -0.6097899675369263, -0.7119789123535156, -1.0623412132263184, ] assert ( processed_text == "the bird sat on a tree located at the intersection of 23rd and 43rd streets" ) assert extracted_feature_img["image_embeds_proj"][0, 0, 10:20].tolist() == [ 0.08971136063337326, -0.10915573686361313, -0.020636577159166336, 0.048121627420186996, -0.05943416804075241, -0.129856139421463, -0.0034469354432076216, 0.017888527363538742, -0.03284582123160362, -0.1037328764796257, ] assert extracted_feature_text["text_embeds_proj"][0, 0, 10:20].tolist() == [ -0.06229640915989876, 0.11278597265481949, 0.06628583371639252, 0.1649140566587448, 0.068987175822258, 0.006291372701525688, 0.03244050219655037, -0.049556829035282135, 0.050752390176057816, -0.0421440489590168, ] del model, vis_processor, txt_processor cuda.empty_cache() def test_load_feature_extractor_model_clip_base(): my_dict = {} multimodal_device = device("cuda" if cuda.is_available() else "cpu") ( model, vis_processor, txt_processor, ) = ms.MultimodalSearch.load_feature_extractor_model_clip_base( my_dict, multimodal_device ) test_pic = Image.open(TEST_IMAGE_2).convert("RGB") test_querry = ( "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device) processed_text = txt_processor["eval"](test_querry) with no_grad(): extracted_feature_img = model.extract_features({"image": processed_pic}) extracted_feature_text = model.extract_features({"text_input": processed_text}) assert processed_pic[0, 0, 0, 25:35].tolist() == [ -0.7995694875717163, -0.7849710583686829, -0.7849710583686829, -0.7703726291656494, -0.7703726291656494, -0.7849710583686829, -0.7849710583686829, -0.7703726291656494, -0.7703726291656494, -0.7703726291656494, ] assert ( processed_text == "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) assert extracted_feature_img[0, 10:20].tolist() == [ 0.15101124346256256, -0.03759124130010605, -0.40093156695365906, -0.32228705286979675, 0.1576370894908905, -0.23340347409248352, -0.3892208933830261, 0.20170584321022034, -0.030034437775611877, 0.19082790613174438, ] assert extracted_feature_text[0, 10:20].tolist() == [ 0.15391531586647034, 0.3078577518463135, 0.21737979352474213, 0.0775114893913269, -0.3013279139995575, 0.2806251049041748, -0.0407320111989975, -0.02664487063884735, -0.1858849972486496, 0.20347601175308228, ] del model, vis_processor, txt_processor cuda.empty_cache() def test_load_feature_extractor_model_clip_vitl14(): my_dict = {} multimodal_device = device("cuda" if cuda.is_available() else "cpu") ( model, vis_processor, txt_processor, ) = ms.MultimodalSearch.load_feature_extractor_model_clip_vitl14( my_dict, multimodal_device ) test_pic = Image.open(TEST_IMAGE_2).convert("RGB") test_querry = ( "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device) processed_text = txt_processor["eval"](test_querry) with no_grad(): extracted_feature_img = model.extract_features({"image": processed_pic}) extracted_feature_text = model.extract_features({"text_input": processed_text}) assert processed_pic[0, 0, 0, 25:35].tolist() == [ -0.7995694875717163, -0.7849710583686829, -0.7849710583686829, -0.7703726291656494, -0.7703726291656494, -0.7849710583686829, -0.7849710583686829, -0.7703726291656494, -0.7703726291656494, -0.7703726291656494, ] assert ( processed_text == "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) assert extracted_feature_img[0, 10:20].tolist() == [ -0.3911527395248413, -0.35456305742263794, 0.5724918842315674, 0.3184954524040222, 0.23444902896881104, -0.14105141162872314, 0.26309096813201904, -0.0559774711728096, 0.19491413235664368, 0.01419895887374878, ] assert extracted_feature_text[0, 10:20].tolist() == [ -0.07539052516222, 0.0939129889011383, -0.2643853425979614, -0.2459949105978012, 0.2387947291135788, -0.5204038023948669, -0.514020562171936, -0.32557412981987, 0.18563221395015717, -0.3183072805404663, ] del model, vis_processor, txt_processor cuda.empty_cache() def test_load_feature_extractor_model_clip_vitl14_336(): my_dict = {} multimodal_device = device("cuda" if cuda.is_available() else "cpu") ( model, vis_processor, txt_processor, ) = ms.MultimodalSearch.load_feature_extractor_model_clip_vitl14_336( my_dict, multimodal_device ) test_pic = Image.open(TEST_IMAGE_2).convert("RGB") test_querry = ( "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) processed_pic = vis_processor["eval"](test_pic).unsqueeze(0).to(multimodal_device) processed_text = txt_processor["eval"](test_querry) with no_grad(): extracted_feature_img = model.extract_features({"image": processed_pic}) extracted_feature_text = model.extract_features({"text_input": processed_text}) assert processed_pic[0, 0, 0, 25:35].tolist() == [ -0.7995694875717163, -0.7849710583686829, -0.7849710583686829, -0.7849710583686829, -0.7849710583686829, -0.7849710583686829, -0.7849710583686829, -0.9163569211959839, -1.149931788444519, -1.0039474964141846, ] assert ( processed_text == "The bird sat on a tree located at the intersection of 23rd and 43rd streets." ) assert extracted_feature_img[0, 10:20].tolist() == [ -0.15060146152973175, -0.1998099535703659, 0.5503129363059998, 0.2589969336986542, -0.0182882659137249, -0.12753525376319885, 0.018985718488693237, -0.17110440135002136, 0.02220013737678528, 0.01086437702178955, ] assert extracted_feature_text[0, 10:20].tolist() == [ -0.1172553077340126, 0.07105237245559692, -0.283934086561203, -0.24353823065757751, 0.22662702202796936, -0.472959041595459, -0.5191791653633118, -0.29402273893356323, 0.22669515013694763, -0.32044747471809387, ] del model, vis_processor, txt_processor cuda.empty_cache()