from misinformation.utils import AnalysisMethod import torch from PIL import Image from lavis.models import load_model_and_preprocess class SummaryDetector(AnalysisMethod): def __init__(self, subdict: dict) -> None: super().__init__(subdict) self.subdict.update(self.set_keys()) self.image_summary = { "const_image_summary": None, "3_non-deterministic summary": None, } summary_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_model_base(self): summary_model, summary_vis_processors, _ = load_model_and_preprocess( name="blip_caption", model_type="base_coco", is_eval=True, device=SummaryDetector.summary_device, ) return summary_model, summary_vis_processors def load_model_large(self): summary_model, summary_vis_processors, _ = load_model_and_preprocess( name="blip_caption", model_type="large_coco", is_eval=True, device=SummaryDetector.summary_device, ) return summary_model, summary_vis_processors def set_keys(self) -> dict: params = { "const_image_summary": None, "3_non-deterministic summary": None, } return params def analyse_image(self, model_type): select_model = { "base": self.load_model_base, "large": self.load_model_large, } summary_model, summary_vis_processors = select_model[model_type]() path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( summary_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) with torch.no_grad(): self.image_summary["const_image_summary"] = summary_model.generate( {"image": image} )[0] self.image_summary[ "3_non-deterministic summary" ] = summary_model.generate( {"image": image}, use_nucleus_sampling=True, num_captions=3 ) for key in self.image_summary: self.subdict[key] = self.image_summary[key] return self.subdict ( summary_VQA_model, summary_VQA_vis_processors, summary_VQA_txt_processors, ) = load_model_and_preprocess( name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device ) def analyse_questions(self, model_type, list_of_questions): if len(list_of_questions) > 0: path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( summary_VQA_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) question_batch = [] for quest in list_of_questions: question_batch.append(self.summary_VQA_txt_processors["eval"](quest)) batch_size = len(list_of_questions) image_batch = image.repeat(batch_size, 1, 1, 1) with torch.no_grad(): answers_batch = self.summary_VQA_model.predict_answers( samples={"image": image_batch, "text_input": question_batch}, inference_method="generate", ) for q, a in zip(question_batch, answers_batch): self.image_summary[q] = a for key in self.image_summary: self.subdict[key] = self.image_summary[key] else: print("Please, enter list of questions") return self.subdict