from misinformation.utils import AnalysisMethod from torch import device, cuda, no_grad from PIL import Image from lavis.models import load_model_and_preprocess class SummaryDetector(AnalysisMethod): def __init__(self, subdict: dict) -> None: super().__init__(subdict) summary_device = device("cuda" if cuda.is_available() else "cpu") summary_model, summary_vis_processors, _ = load_model_and_preprocess( name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device, ) def load_model_base(self): summary_device = device("cuda" if cuda.is_available() else "cpu") summary_model, summary_vis_processors, _ = load_model_and_preprocess( name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device, ) return summary_model, summary_vis_processors def load_model_large(self): summary_device = device("cuda" if cuda.is_available() else "cpu") summary_model, summary_vis_processors, _ = load_model_and_preprocess( name="blip_caption", model_type="large_coco", is_eval=True, device=summary_device, ) return summary_model, summary_vis_processors def load_model(self, model_type): select_model = { "base": SummaryDetector.load_model_base, "large": SummaryDetector.load_model_large, } summary_model, summary_vis_processors = select_model[model_type](self) return summary_model, summary_vis_processors def analyse_image(self, summary_model=None, summary_vis_processors=None): if summary_model is None and summary_vis_processors is None: summary_model = SummaryDetector.summary_model summary_vis_processors = SummaryDetector.summary_vis_processors path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( summary_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) with no_grad(): self.subdict["const_image_summary"] = summary_model.generate( {"image": image} )[0] self.subdict["3_non-deterministic summary"] = summary_model.generate( {"image": image}, use_nucleus_sampling=True, num_captions=3 ) return self.subdict ( summary_VQA_model, summary_VQA_vis_processors, summary_VQA_txt_processors, ) = load_model_and_preprocess( name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device ) def analyse_questions(self, list_of_questions): if len(list_of_questions) > 0: path = self.subdict["filename"] raw_image = Image.open(path).convert("RGB") image = ( self.summary_VQA_vis_processors["eval"](raw_image) .unsqueeze(0) .to(self.summary_device) ) question_batch = [] for quest in list_of_questions: question_batch.append(self.summary_VQA_txt_processors["eval"](quest)) batch_size = len(list_of_questions) image_batch = image.repeat(batch_size, 1, 1, 1) with no_grad(): answers_batch = self.summary_VQA_model.predict_answers( samples={"image": image_batch, "text_input": question_batch}, inference_method="generate", ) for q, a in zip(list_of_questions, answers_batch): self.subdict[q] = a else: print("Please, enter list of questions") return self.subdict