{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Color Detector\n",
"\n",
"\n",
"\n",
"This notebook shows primary color analysis of color image using K-Means algorithm.\n",
"The output are N primary colors and their corresponding percentage.\n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:06.581353Z",
"iopub.status.busy": "2023-10-27T11:09:06.580922Z",
"iopub.status.idle": "2023-10-27T11:09:06.589343Z",
"shell.execute_reply": "2023-10-27T11:09:06.588768Z"
}
},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:06.592728Z",
"iopub.status.busy": "2023-10-27T11:09:06.592204Z",
"iopub.status.idle": "2023-10-27T11:09:20.790271Z",
"shell.execute_reply": "2023-10-27T11:09:20.789628Z"
}
},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We select a subset of image files to try the color analysis on, see the `limit` keyword. The `find_files` function finds image files within a given directory:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:20.794456Z",
"iopub.status.busy": "2023-10-27T11:09:20.793647Z",
"iopub.status.idle": "2023-10-27T11:09:20.799018Z",
"shell.execute_reply": "2023-10-27T11:09:20.798433Z"
}
},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"image_dict = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
"Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:20.802737Z",
"iopub.status.busy": "2023-10-27T11:09:20.802148Z",
"iopub.status.idle": "2023-10-27T11:09:20.832526Z",
"shell.execute_reply": "2023-10-27T11:09:20.831992Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(image_dict)\n",
"analysis_explorer.run_server(port = 8057)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:20.840031Z",
"iopub.status.busy": "2023-10-27T11:09:20.839416Z",
"iopub.status.idle": "2023-10-27T11:09:27.698063Z",
"shell.execute_reply": "2023-10-27T11:09:27.697388Z"
}
},
"outputs": [],
"source": [
"for key in image_dict.keys():\n",
" image_dict[key] = ammico.colors.ColorDetector(image_dict[key]).analyse_image()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:27.701934Z",
"iopub.status.busy": "2023-10-27T11:09:27.701481Z",
"iopub.status.idle": "2023-10-27T11:09:27.706063Z",
"shell.execute_reply": "2023-10-27T11:09:27.704956Z"
}
},
"outputs": [],
"source": [
"image_df = ammico.get_dataframe(image_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:27.709238Z",
"iopub.status.busy": "2023-10-27T11:09:27.708804Z",
"iopub.status.idle": "2023-10-27T11:09:27.724420Z",
"shell.execute_reply": "2023-10-27T11:09:27.723745Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" filename | \n",
" red | \n",
" green | \n",
" blue | \n",
" yellow | \n",
" cyan | \n",
" orange | \n",
" purple | \n",
" pink | \n",
" brown | \n",
" grey | \n",
" white | \n",
" black | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" data/106349S_por.png | \n",
" 0.01 | \n",
" 0.01 | \n",
" 0.05 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.22 | \n",
" 0.0 | \n",
" 0.03 | \n",
" 0.68 | \n",
" 0.00 | \n",
" 0.00 | \n",
"
\n",
" \n",
" | 1 | \n",
" data/102141_2_eng.png | \n",
" 0.04 | \n",
" 0.03 | \n",
" 0.02 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.01 | \n",
" 0.0 | \n",
" 0.32 | \n",
" 0.23 | \n",
" 0.31 | \n",
" 0.05 | \n",
"
\n",
" \n",
" | 2 | \n",
" data/102730_eng.png | \n",
" 0.05 | \n",
" 0.00 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0.00 | \n",
" 0.0 | \n",
" 0.00 | \n",
" 0.66 | \n",
" 0.02 | \n",
" 0.27 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" filename red green blue yellow cyan orange purple \\\n",
"0 data/106349S_por.png 0.01 0.01 0.05 0.0 0 0 0.22 \n",
"1 data/102141_2_eng.png 0.04 0.03 0.02 0.0 0 0 0.01 \n",
"2 data/102730_eng.png 0.05 0.00 0.00 0.0 0 0 0.00 \n",
"\n",
" pink brown grey white black \n",
"0 0.0 0.03 0.68 0.00 0.00 \n",
"1 0.0 0.32 0.23 0.31 0.05 \n",
"2 0.0 0.00 0.66 0.02 0.27 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"image_df.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file - here you should provide a file path and file name for the csv file to be written."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-27T11:09:27.728331Z",
"iopub.status.busy": "2023-10-27T11:09:27.727904Z",
"iopub.status.idle": "2023-10-27T11:09:27.732733Z",
"shell.execute_reply": "2023-10-27T11:09:27.732153Z"
}
},
"outputs": [],
"source": [
"image_df.to_csv(\"data_out.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}