import ipywidgets from IPython.display import display import misinformation.faces as faces import misinformation.text as text import misinformation.objects as objects class JSONContainer: """Expose a Python dictionary as a JSON document in JupyterLab rich display rendering. """ def __init__(self, data={}): self._data = data def _repr_json_(self): return self._data def explore_analysis(mydict, identify="faces"): # dictionary mapping the type of analysis to be explored identify_dict = { "faces": faces.EmotionDetector, "text-on-image": text.TextDetector, "objects": objects.ObjectDetector, } # create a list containing the image ids for the widget # image_paths = [mydict[key]["filename"] for key in mydict.keys()] image_ids = [key for key in mydict.keys()] # Create an image selector widget image_select = ipywidgets.Select( options=image_ids, layout=ipywidgets.Layout(width="20%"), rows=20 ) # Set up the facial recognition output widget output = ipywidgets.Output(layout=ipywidgets.Layout(width="30%")) # Set up the image selection and display widget image_widget = ipywidgets.Box( children=[], layout=ipywidgets.Layout(width="50%"), ) # Register the tab switch logic def switch(_): # Clear existing output image_widget.children = () output.clear_output() # Create the new content image_widget.children = ( ipywidgets.Image.from_file(mydict[image_select.value]["filename"]), ) # This output widget absorbes print statements that are messing with # the widget output and cannot be disabled through the API. with faces.NocatchOutput(): mydict[image_select.value] = identify_dict[identify]( mydict[image_select.value] ).analyse_image() with output: display(JSONContainer(mydict[image_select.value])) # Register the handler and trigger it immediately image_select.observe(switch, names=("value",), type="change") switch(None) # Show the combined widget return ipywidgets.HBox([image_select, image_widget, output])