зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 05:04:14 +02:00
* maintain: remove text analysis with transformers and topic analysis * maintain: remove text analysis from display function * maintain: remove summary module (VQA) * maintain: remove summary module (VQA) * maintain: remove cropposts, update pyproject.toml * maintain: removed obsolete functionality * maintain: update CI workflow * maintain: run all tests together in CI, remove version restrictions * maintain: fix tf version for deepface/retinaface restrictions * mainatin: remove more obsolete files, restructure pyproject.toml * fix: do not run gcv tests on CI * CI: test compatibility with Python versions * maintain+bug: fix python version due to deepface, fix deepface memory leak * maintain: switch to ruff * fix: correct remaining ruff issues, is_interactive probably obsolete..? * CI: bump actions and python versions, run checks on all os * maintain&fix: blis do not compile from source, use uv for installs, update dockerfile * fix: uv install system-wide * fix: try with only pip to force blis binary install * fix: try now with mixed pip and uv for better performance while preserving blis binary * fix: revert to pip since uv installs different numpy version, unfortunately * fix: other python version
324 строки
13 KiB
Python
324 строки
13 KiB
Python
from google.cloud import vision
|
||
from google.auth.exceptions import DefaultCredentialsError
|
||
from googletrans import Translator
|
||
import spacy
|
||
import io
|
||
import os
|
||
import re
|
||
from ammico.utils import AnalysisMethod
|
||
import grpc
|
||
import pandas as pd
|
||
|
||
PRIVACY_STATEMENT = """The Text Detector uses Google Cloud Vision
|
||
and Google Translate. Detailed information about how information
|
||
is being processed is provided here:
|
||
https://ssciwr.github.io/AMMICO/build/html/faq_link.html.
|
||
Google’s privacy policy can be read here: https://policies.google.com/privacy.
|
||
By continuing to use this Detector, you agree to send the data you want analyzed
|
||
to the Google servers for extraction and translation."""
|
||
|
||
|
||
def privacy_disclosure(accept_privacy: str = "PRIVACY_AMMICO"):
|
||
"""
|
||
Asks the user to accept the privacy statement.
|
||
|
||
Args:
|
||
accept_privacy (str): The name of the disclosure variable (default: "PRIVACY_AMMICO").
|
||
"""
|
||
if not os.environ.get(accept_privacy):
|
||
accepted = _ask_for_privacy_acceptance(accept_privacy)
|
||
elif os.environ.get(accept_privacy) == "False":
|
||
accepted = False
|
||
elif os.environ.get(accept_privacy) == "True":
|
||
accepted = True
|
||
else:
|
||
print(
|
||
"Could not determine privacy disclosure - skipping \
|
||
text detection and translation."
|
||
)
|
||
accepted = False
|
||
return accepted
|
||
|
||
|
||
def _ask_for_privacy_acceptance(accept_privacy: str = "PRIVACY_AMMICO"):
|
||
"""
|
||
Asks the user to accept the disclosure.
|
||
"""
|
||
print(PRIVACY_STATEMENT)
|
||
answer = input("Do you accept the privacy disclosure? (yes/no): ")
|
||
answer = answer.lower().strip()
|
||
if answer == "yes":
|
||
print("You have accepted the privacy disclosure.")
|
||
print("""Text detection and translation will be performed.""")
|
||
os.environ[accept_privacy] = "True"
|
||
accepted = True
|
||
elif answer == "no":
|
||
print("You have not accepted the privacy disclosure.")
|
||
print("No text detection and translation will be performed.")
|
||
os.environ[accept_privacy] = "False"
|
||
accepted = False
|
||
else:
|
||
print("Please answer with yes or no.")
|
||
accepted = _ask_for_privacy_acceptance()
|
||
return accepted
|
||
|
||
|
||
class TextDetector(AnalysisMethod):
|
||
def __init__(
|
||
self,
|
||
subdict: dict,
|
||
analyse_text: bool = False,
|
||
skip_extraction: bool = False,
|
||
accept_privacy: str = "PRIVACY_AMMICO",
|
||
) -> None:
|
||
"""Init text detection class.
|
||
|
||
Args:
|
||
subdict (dict): Dictionary containing file name/path, and possibly previous
|
||
analysis results from other modules.
|
||
analyse_text (bool, optional): Decide if extracted text will be further subject
|
||
to analysis. Defaults to False.
|
||
skip_extraction (bool, optional): Decide if text will be extracted from images or
|
||
is already provided via a csv. Defaults to False.
|
||
accept_privacy (str, optional): Environment variable to accept the privacy
|
||
statement for the Google Cloud processing of the data. Defaults to
|
||
"PRIVACY_AMMICO".
|
||
"""
|
||
super().__init__(subdict)
|
||
# disable this for now
|
||
# maybe it would be better to initialize the keys differently
|
||
# the reason is that they are inconsistent depending on the selected
|
||
# options, and also this may not be really necessary and rather restrictive
|
||
# self.subdict.update(self.set_keys())
|
||
self.accepted = privacy_disclosure(accept_privacy)
|
||
if not self.accepted:
|
||
raise ValueError(
|
||
"Privacy disclosure not accepted - skipping text detection."
|
||
)
|
||
self.translator = Translator(raise_exception=True)
|
||
if not isinstance(analyse_text, bool):
|
||
raise ValueError("analyse_text needs to be set to true or false")
|
||
self.analyse_text = analyse_text
|
||
self.skip_extraction = skip_extraction
|
||
if not isinstance(skip_extraction, bool):
|
||
raise ValueError("skip_extraction needs to be set to true or false")
|
||
if self.skip_extraction:
|
||
print("Skipping text extraction from image.")
|
||
print("Reading text directly from provided dictionary.")
|
||
if self.analyse_text:
|
||
self._initialize_spacy()
|
||
|
||
def set_keys(self) -> dict:
|
||
"""Set the default keys for text analysis.
|
||
|
||
Returns:
|
||
dict: The dictionary with default text keys.
|
||
"""
|
||
params = {"text": None, "text_language": None, "text_english": None}
|
||
return params
|
||
|
||
def _initialize_spacy(self):
|
||
"""Initialize the Spacy library for text analysis."""
|
||
try:
|
||
self.nlp = spacy.load("en_core_web_md")
|
||
except Exception:
|
||
spacy.cli.download("en_core_web_md")
|
||
self.nlp = spacy.load("en_core_web_md")
|
||
|
||
def _check_add_space_after_full_stop(self):
|
||
"""Add a space after a full stop. Required by googletrans."""
|
||
# we have found text, now we check for full stops
|
||
index_stop = [
|
||
i.start()
|
||
for i in re.finditer("\.", self.subdict["text"]) # noqa
|
||
]
|
||
if not index_stop: # no full stops found
|
||
return
|
||
# check if this includes the last string item
|
||
end_of_list = False
|
||
if len(self.subdict["text"]) <= (index_stop[-1] + 1):
|
||
# the last found full stop is at the end of the string
|
||
# but we can include all others
|
||
if len(index_stop) == 1:
|
||
end_of_list = True
|
||
else:
|
||
index_stop.pop()
|
||
if end_of_list: # only one full stop at end of string
|
||
return
|
||
# if this is not the end of the list, check if there is a space after the full stop
|
||
no_space = [i for i in index_stop if self.subdict["text"][i + 1] != " "]
|
||
if not no_space: # all full stops have a space after them
|
||
return
|
||
# else, amend the text
|
||
add_one = 1
|
||
for i in no_space:
|
||
self.subdict["text"] = (
|
||
self.subdict["text"][: i + add_one]
|
||
+ " "
|
||
+ self.subdict["text"][i + add_one :]
|
||
)
|
||
add_one += 1
|
||
|
||
def _truncate_text(self, max_length: int = 5000) -> str:
|
||
"""Truncate the text if it is too long for googletrans."""
|
||
if self.subdict["text"] and len(self.subdict["text"]) > max_length:
|
||
print("Text is too long - truncating to {} characters.".format(max_length))
|
||
self.subdict["text_truncated"] = self.subdict["text"][:max_length]
|
||
|
||
def analyse_image(self) -> dict:
|
||
"""Perform text extraction and analysis of the text.
|
||
|
||
Returns:
|
||
dict: The updated dictionary with text analysis results.
|
||
"""
|
||
if not self.skip_extraction:
|
||
self.get_text_from_image()
|
||
# check that text was found
|
||
if not self.subdict["text"]:
|
||
print("No text found - skipping analysis.")
|
||
else:
|
||
# make sure all full stops are followed by whitespace
|
||
# otherwise googletrans breaks
|
||
self._check_add_space_after_full_stop()
|
||
self._truncate_text()
|
||
self.translate_text()
|
||
self.remove_linebreaks()
|
||
if self.analyse_text and self.subdict["text_english"]:
|
||
self._run_spacy()
|
||
return self.subdict
|
||
|
||
def get_text_from_image(self):
|
||
"""Detect text on the image using Google Cloud Vision API."""
|
||
if not self.accepted:
|
||
raise ValueError(
|
||
"Privacy disclosure not accepted - skipping text detection."
|
||
)
|
||
path = self.subdict["filename"]
|
||
try:
|
||
client = vision.ImageAnnotatorClient()
|
||
except DefaultCredentialsError:
|
||
raise DefaultCredentialsError(
|
||
"Please provide credentials for google cloud vision API, see https://cloud.google.com/docs/authentication/application-default-credentials."
|
||
)
|
||
with io.open(path, "rb") as image_file:
|
||
content = image_file.read()
|
||
image = vision.Image(content=content)
|
||
# check for usual connection errors and retry if necessary
|
||
try:
|
||
response = client.text_detection(image=image)
|
||
except grpc.RpcError as exc:
|
||
print("Cloud vision API connection failed")
|
||
print("Skipping this image ..{}".format(path))
|
||
print("Connection failed with code {}: {}".format(exc.code(), exc))
|
||
# here check if text was found on image
|
||
if response:
|
||
texts = response.text_annotations[0].description
|
||
self.subdict["text"] = texts
|
||
else:
|
||
print("No text found on image.")
|
||
self.subdict["text"] = None
|
||
if response.error.message:
|
||
print("Google Cloud Vision Error")
|
||
raise ValueError(
|
||
"{}\nFor more info on error messages, check: "
|
||
"https://cloud.google.com/apis/design/errors".format(
|
||
response.error.message
|
||
)
|
||
)
|
||
|
||
def translate_text(self):
|
||
"""Translate the detected text to English using the Translator object."""
|
||
if not self.accepted:
|
||
raise ValueError(
|
||
"Privacy disclosure not accepted - skipping text translation."
|
||
)
|
||
text_to_translate = (
|
||
self.subdict["text_truncated"]
|
||
if "text_truncated" in self.subdict
|
||
else self.subdict["text"]
|
||
)
|
||
try:
|
||
translated = self.translator.translate(text_to_translate)
|
||
except Exception:
|
||
print("Could not translate the text with error {}.".format(Exception))
|
||
translated = None
|
||
print("Skipping translation for this text.")
|
||
self.subdict["text_language"] = translated.src if translated else None
|
||
self.subdict["text_english"] = translated.text if translated else None
|
||
|
||
def remove_linebreaks(self):
|
||
"""Remove linebreaks from original and translated text."""
|
||
if self.subdict["text"] and self.subdict["text_english"]:
|
||
self.subdict["text"] = self.subdict["text"].replace("\n", " ")
|
||
self.subdict["text_english"] = self.subdict["text_english"].replace(
|
||
"\n", " "
|
||
)
|
||
|
||
def _run_spacy(self):
|
||
"""Generate Spacy doc object for further text analysis."""
|
||
self.doc = self.nlp(self.subdict["text_english"])
|
||
|
||
|
||
class TextAnalyzer:
|
||
"""Used to get text from a csv and then run the TextDetector on it."""
|
||
|
||
def __init__(
|
||
self, csv_path: str, column_key: str = None, csv_encoding: str = "utf-8"
|
||
) -> None:
|
||
"""Init the TextTranslator class.
|
||
|
||
Args:
|
||
csv_path (str): Path to the CSV file containing the text entries.
|
||
column_key (str): Key for the column containing the text entries.
|
||
Defaults to None.
|
||
csv_encoding (str): Encoding of the CSV file. Defaults to "utf-8".
|
||
"""
|
||
self.csv_path = csv_path
|
||
self.column_key = column_key
|
||
self.csv_encoding = csv_encoding
|
||
self._check_valid_csv_path()
|
||
self._check_file_exists()
|
||
if not self.column_key:
|
||
print("No column key provided - using 'text' as default.")
|
||
self.column_key = "text"
|
||
if not self.csv_encoding:
|
||
print("No encoding provided - using 'utf-8' as default.")
|
||
self.csv_encoding = "utf-8"
|
||
if not isinstance(self.column_key, str):
|
||
raise ValueError("The provided column key is not a string.")
|
||
if not isinstance(self.csv_encoding, str):
|
||
raise ValueError("The provided encoding is not a string.")
|
||
|
||
def _check_valid_csv_path(self):
|
||
if not isinstance(self.csv_path, str):
|
||
raise ValueError("The provided path to the CSV file is not a string.")
|
||
if not self.csv_path.endswith(".csv"):
|
||
raise ValueError("The provided file is not a CSV file.")
|
||
|
||
def _check_file_exists(self):
|
||
try:
|
||
with open(self.csv_path, "r") as file: # noqa
|
||
pass
|
||
except FileNotFoundError:
|
||
raise FileNotFoundError("The provided CSV file does not exist.")
|
||
|
||
def read_csv(self) -> dict:
|
||
"""Read the CSV file and return the dictionary with the text entries.
|
||
|
||
Returns:
|
||
dict: The dictionary with the text entries.
|
||
"""
|
||
df = pd.read_csv(self.csv_path, encoding=self.csv_encoding)
|
||
|
||
if self.column_key not in df:
|
||
raise ValueError(
|
||
"The provided column key is not in the CSV file. Please check."
|
||
)
|
||
self.mylist = df[self.column_key].to_list()
|
||
self.mydict = {}
|
||
for i, text in enumerate(self.mylist):
|
||
self.mydict[self.csv_path + "row-" + str(i)] = {
|
||
"filename": self.csv_path,
|
||
"text": text,
|
||
}
|