AMMICO/ammico/summary.py
2023-05-24 13:30:02 +02:00

142 строки
4.8 KiB
Python

from ammico.utils import AnalysisMethod
from torch import device, cuda, no_grad
from PIL import Image
from lavis.models import load_model_and_preprocess
class SummaryDetector(AnalysisMethod):
def __init__(self, subdict: dict) -> None:
super().__init__(subdict)
self.summary_device = "cuda" if cuda.is_available() else "cpu"
def load_model_base(self):
"""
Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="base_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model_large(self):
"""
Load large_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="large_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model(self, model_type: str):
"""
Load blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
model_type (str): type of the model.
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
"""
select_model = {
"base": SummaryDetector.load_model_base,
"large": SummaryDetector.load_model_large,
}
summary_model, summary_vis_processors = select_model[model_type](self)
return summary_model, summary_vis_processors
def analyse_image(self, summary_model=None, summary_vis_processors=None):
"""
Create 1 constant and 3 non deterministic captions for image.
Args:
summary_model (str): model.
summary_vis_processors (str): preprocessors for visual inputs.
Returns:
self.subdict (dict): dictionary with constant image summary and 3 non deterministic summary.
"""
if summary_model is None and summary_vis_processors is None:
summary_model, summary_vis_processors = self.load_model_base()
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
summary_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
with no_grad():
self.subdict["const_image_summary"] = summary_model.generate(
{"image": image}
)[0]
self.subdict["3_non-deterministic summary"] = summary_model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
return self.subdict
def analyse_questions(self, list_of_questions: list[str]) -> dict:
"""
Generate answers to free-form questions about image written in natural language.
Args:
list_of_questions (list[str]): list of questions.
Returns:
self.subdict (dict): dictionary with answers to questions.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
if len(list_of_questions) > 0:
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
summary_vqa_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
question_batch = []
for quest in list_of_questions:
question_batch.append(summary_vqa_txt_processors["eval"](quest))
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
with no_grad():
answers_batch = summary_vqa_model.predict_answers(
samples={"image": image_batch, "text_input": question_batch},
inference_method="generate",
)
for q, a in zip(list_of_questions, answers_batch):
self.subdict[q] = a
else:
print("Please, enter list of questions")
return self.subdict