зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 05:26:05 +02:00
363 строки
10 KiB
Plaintext
363 строки
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Color Detector\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"This notebook shows primary color analysis of color image using K-Means algorithm.\n",
|
|
"The output are N primary colors and their corresponding percentage.\n",
|
|
"\n",
|
|
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
|
|
"\n",
|
|
"After that, we can import `ammico` and read in the files given a folder path."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:06.893784Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:06.893592Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:06.901045Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:06.900549Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# if running on google colab\n",
|
|
"# flake8-noqa-cell\n",
|
|
"import os\n",
|
|
"\n",
|
|
"if \"google.colab\" in str(get_ipython()):\n",
|
|
" # update python version\n",
|
|
" # install setuptools\n",
|
|
" # %pip install setuptools==61 -qqq\n",
|
|
" # install ammico\n",
|
|
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
|
" # mount google drive for data and API key\n",
|
|
" from google.colab import drive\n",
|
|
"\n",
|
|
" drive.mount(\"/content/drive\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:06.903564Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:06.903204Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:20.918642Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:20.917797Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import ammico\n",
|
|
"from ammico import utils as mutils\n",
|
|
"from ammico import display as mdisplay\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We select a subset of image files to try the color analysis on, see the `limit` keyword. The `find_files` function finds image files within a given directory:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:20.922071Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:20.921343Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:20.926372Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:20.925792Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Here you need to provide the path to your google drive folder\n",
|
|
"# or local folder containing the images\n",
|
|
"image_dict = mutils.find_files(\n",
|
|
" path=\"data/\",\n",
|
|
" limit=10,\n",
|
|
")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
|
|
"Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:20.929815Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:20.929407Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:20.965670Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:20.964719Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"\n",
|
|
" <iframe\n",
|
|
" width=\"100%\"\n",
|
|
" height=\"650\"\n",
|
|
" src=\"http://127.0.0.1:8057/\"\n",
|
|
" frameborder=\"0\"\n",
|
|
" allowfullscreen\n",
|
|
" \n",
|
|
" ></iframe>\n",
|
|
" "
|
|
],
|
|
"text/plain": [
|
|
"<IPython.lib.display.IFrame at 0x7fd90adf4cd0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"analysis_explorer = mdisplay.AnalysisExplorer(image_dict)\n",
|
|
"analysis_explorer.run_server(port = 8057)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:20.968930Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:20.968358Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:26.328182Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:26.327484Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"for key in image_dict.keys():\n",
|
|
" image_dict[key] = ammico.colors.ColorDetector(image_dict[key]).analyse_image()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:26.331271Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:26.330894Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:26.334703Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:26.334030Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"image_df = ammico.get_dataframe(image_dict)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Check the dataframe:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:26.338776Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:26.338287Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:26.350669Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:26.350034Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>filename</th>\n",
|
|
" <th>red</th>\n",
|
|
" <th>green</th>\n",
|
|
" <th>blue</th>\n",
|
|
" <th>yellow</th>\n",
|
|
" <th>cyan</th>\n",
|
|
" <th>orange</th>\n",
|
|
" <th>purple</th>\n",
|
|
" <th>pink</th>\n",
|
|
" <th>brown</th>\n",
|
|
" <th>grey</th>\n",
|
|
" <th>white</th>\n",
|
|
" <th>black</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>data/106349S_por.png</td>\n",
|
|
" <td>0.01</td>\n",
|
|
" <td>0.01</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.22</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.03</td>\n",
|
|
" <td>0.68</td>\n",
|
|
" <td>0.00</td>\n",
|
|
" <td>0.00</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>data/102141_2_eng.png</td>\n",
|
|
" <td>0.04</td>\n",
|
|
" <td>0.03</td>\n",
|
|
" <td>0.02</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.01</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.32</td>\n",
|
|
" <td>0.23</td>\n",
|
|
" <td>0.31</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>data/102730_eng.png</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>0.00</td>\n",
|
|
" <td>0.00</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.00</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.00</td>\n",
|
|
" <td>0.66</td>\n",
|
|
" <td>0.02</td>\n",
|
|
" <td>0.27</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" filename red green blue yellow cyan orange purple \\\n",
|
|
"0 data/106349S_por.png 0.01 0.01 0.05 0.0 0 0 0.22 \n",
|
|
"1 data/102141_2_eng.png 0.04 0.03 0.02 0.0 0 0 0.01 \n",
|
|
"2 data/102730_eng.png 0.05 0.00 0.00 0.0 0 0 0.00 \n",
|
|
"\n",
|
|
" pink brown grey white black \n",
|
|
"0 0.0 0.03 0.68 0.00 0.00 \n",
|
|
"1 0.0 0.32 0.23 0.31 0.05 \n",
|
|
"2 0.0 0.00 0.66 0.02 0.27 "
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"image_df.head(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Write the csv file - here you should provide a file path and file name for the csv file to be written."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2024-01-15T11:10:26.353181Z",
|
|
"iopub.status.busy": "2024-01-15T11:10:26.352811Z",
|
|
"iopub.status.idle": "2024-01-15T11:10:26.357012Z",
|
|
"shell.execute_reply": "2024-01-15T11:10:26.356396Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"image_df.to_csv(\"data_out.csv\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.18"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|