зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 05:04:14 +02:00
* fix typos * add buttons for google colab everywhere * update readme, separate out FAQ * add privacy disclosure statement * do not install using uv * update docs notebook * explicit install of libopenblas * explicit install of libopenblas * explicit install of libopenblas * try to get scipy installed using uv * use ubuntu 24.04 * go back to pip * try with scipy only * try with a few others * use hatchling * wording changes, install all requirements * fix offending spacy version * run all tests * include faq in documentation, fix link
301 строка
12 KiB
Python
301 строка
12 KiB
Python
import pytest
|
||
import ammico.text as tt
|
||
import spacy
|
||
import json
|
||
import sys
|
||
|
||
|
||
@pytest.fixture
|
||
def set_testdict(get_path):
|
||
testdict = {
|
||
"IMG_3755": {
|
||
"filename": get_path + "IMG_3755.jpg",
|
||
},
|
||
"IMG_3756": {
|
||
"filename": get_path + "IMG_3756.jpg",
|
||
},
|
||
"IMG_3757": {
|
||
"filename": get_path + "IMG_3757.jpg",
|
||
},
|
||
}
|
||
return testdict
|
||
|
||
|
||
LANGUAGES = ["de", "en", "en"]
|
||
|
||
|
||
@pytest.fixture
|
||
def accepted(monkeypatch):
|
||
monkeypatch.setenv("OTHER_VAR", "True")
|
||
tt.TextDetector({}, accept_privacy="OTHER_VAR")
|
||
return "OTHER_VAR"
|
||
|
||
|
||
def test_privacy_statement(monkeypatch):
|
||
# test pre-set variables: privacy
|
||
monkeypatch.delattr("builtins.input", raising=False)
|
||
monkeypatch.setenv("OTHER_VAR", "something")
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, accept_privacy="OTHER_VAR")
|
||
monkeypatch.setenv("OTHER_VAR", "False")
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, accept_privacy="OTHER_VAR")
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, accept_privacy="OTHER_VAR").get_text_from_image()
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, accept_privacy="OTHER_VAR").translate_text()
|
||
monkeypatch.setenv("OTHER_VAR", "True")
|
||
pd = tt.TextDetector({}, accept_privacy="OTHER_VAR")
|
||
assert pd.accepted
|
||
|
||
|
||
def test_TextDetector(set_testdict, accepted):
|
||
for item in set_testdict:
|
||
test_obj = tt.TextDetector(set_testdict[item], accept_privacy=accepted)
|
||
assert not test_obj.analyse_text
|
||
assert not test_obj.skip_extraction
|
||
assert test_obj.subdict["filename"] == set_testdict[item]["filename"]
|
||
assert test_obj.model_summary == "sshleifer/distilbart-cnn-12-6"
|
||
assert (
|
||
test_obj.model_sentiment
|
||
== "distilbert-base-uncased-finetuned-sst-2-english"
|
||
)
|
||
assert test_obj.model_ner == "dbmdz/bert-large-cased-finetuned-conll03-english"
|
||
assert test_obj.revision_summary == "a4f8f3e"
|
||
assert test_obj.revision_sentiment == "af0f99b"
|
||
assert test_obj.revision_ner == "f2482bf"
|
||
test_obj = tt.TextDetector(
|
||
{}, analyse_text=True, skip_extraction=True, accept_privacy=accepted
|
||
)
|
||
assert test_obj.analyse_text
|
||
assert test_obj.skip_extraction
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, analyse_text=1.0, accept_privacy=accepted)
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, skip_extraction=1.0, accept_privacy=accepted)
|
||
|
||
|
||
def test_run_spacy(set_testdict, get_path, accepted):
|
||
test_obj = tt.TextDetector(
|
||
set_testdict["IMG_3755"], analyse_text=True, accept_privacy=accepted
|
||
)
|
||
ref_file = get_path + "text_IMG_3755.txt"
|
||
with open(ref_file, "r") as file:
|
||
reference_text = file.read()
|
||
test_obj.subdict["text_english"] = reference_text
|
||
test_obj._run_spacy()
|
||
assert isinstance(test_obj.doc, spacy.tokens.doc.Doc)
|
||
|
||
|
||
def test_clean_text(set_testdict, accepted):
|
||
nlp = spacy.load("en_core_web_md")
|
||
doc = nlp("I like cats and fjejg")
|
||
test_obj = tt.TextDetector(set_testdict["IMG_3755"], accept_privacy=accepted)
|
||
test_obj.doc = doc
|
||
test_obj.clean_text()
|
||
result = "I like cats and"
|
||
assert test_obj.subdict["text_clean"] == result
|
||
|
||
|
||
def test_init_revision_numbers_and_models(accepted):
|
||
test_obj = tt.TextDetector({}, accept_privacy=accepted)
|
||
# check the default options
|
||
assert test_obj.model_summary == "sshleifer/distilbart-cnn-12-6"
|
||
assert test_obj.model_sentiment == "distilbert-base-uncased-finetuned-sst-2-english"
|
||
assert test_obj.model_ner == "dbmdz/bert-large-cased-finetuned-conll03-english"
|
||
assert test_obj.revision_summary == "a4f8f3e"
|
||
assert test_obj.revision_sentiment == "af0f99b"
|
||
assert test_obj.revision_ner == "f2482bf"
|
||
# provide non-default options
|
||
model_names = ["facebook/bart-large-cnn", None, None]
|
||
test_obj = tt.TextDetector({}, model_names=model_names, accept_privacy=accepted)
|
||
assert test_obj.model_summary == "facebook/bart-large-cnn"
|
||
assert test_obj.model_sentiment == "distilbert-base-uncased-finetuned-sst-2-english"
|
||
assert test_obj.model_ner == "dbmdz/bert-large-cased-finetuned-conll03-english"
|
||
assert not test_obj.revision_summary
|
||
assert test_obj.revision_sentiment == "af0f99b"
|
||
assert test_obj.revision_ner == "f2482bf"
|
||
revision_numbers = ["3d22493", None, None]
|
||
test_obj = tt.TextDetector(
|
||
{},
|
||
model_names=model_names,
|
||
revision_numbers=revision_numbers,
|
||
accept_privacy=accepted,
|
||
)
|
||
assert test_obj.model_summary == "facebook/bart-large-cnn"
|
||
assert test_obj.model_sentiment == "distilbert-base-uncased-finetuned-sst-2-english"
|
||
assert test_obj.model_ner == "dbmdz/bert-large-cased-finetuned-conll03-english"
|
||
assert test_obj.revision_summary == "3d22493"
|
||
assert test_obj.revision_sentiment == "af0f99b"
|
||
assert test_obj.revision_ner == "f2482bf"
|
||
# now test the exceptions
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, analyse_text=1.0, accept_privacy=accepted)
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, model_names=1.0, accept_privacy=accepted)
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, revision_numbers=1.0, accept_privacy=accepted)
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, model_names=["something"], accept_privacy=accepted)
|
||
with pytest.raises(ValueError):
|
||
tt.TextDetector({}, revision_numbers=["something"], accept_privacy=accepted)
|
||
|
||
|
||
@pytest.mark.gcv
|
||
def test_analyse_image(set_testdict, set_environ, accepted):
|
||
for item in set_testdict:
|
||
test_obj = tt.TextDetector(set_testdict[item], accept_privacy=accepted)
|
||
test_obj.analyse_image()
|
||
test_obj = tt.TextDetector(
|
||
set_testdict[item], analyse_text=True, accept_privacy=accepted
|
||
)
|
||
test_obj.analyse_image()
|
||
|
||
|
||
@pytest.mark.gcv
|
||
def test_get_text_from_image(set_testdict, get_path, set_environ, accepted):
|
||
for item in set_testdict:
|
||
test_obj = tt.TextDetector(set_testdict[item], accept_privacy=accepted)
|
||
test_obj.get_text_from_image()
|
||
ref_file = get_path + "text_" + item + ".txt"
|
||
with open(ref_file, "r", encoding="utf8") as file:
|
||
reference_text = file.read().replace("\n", " ")
|
||
assert test_obj.subdict["text"].replace("\n", " ") == reference_text
|
||
|
||
|
||
def test_translate_text(set_testdict, get_path, accepted):
|
||
for item, lang in zip(set_testdict, LANGUAGES):
|
||
test_obj = tt.TextDetector(set_testdict[item], accept_privacy=accepted)
|
||
ref_file = get_path + "text_" + item + ".txt"
|
||
trans_file = get_path + "text_translated_" + item + ".txt"
|
||
with open(ref_file, "r", encoding="utf8") as file:
|
||
reference_text = file.read().replace("\n", " ")
|
||
with open(trans_file, "r", encoding="utf8") as file:
|
||
true_translated_text = file.read().replace("\n", " ")
|
||
test_obj.subdict["text"] = reference_text
|
||
test_obj.translate_text()
|
||
assert test_obj.subdict["text_language"] == lang
|
||
translated_text = test_obj.subdict["text_english"].lower().replace("\n", " ")
|
||
for word in true_translated_text.lower():
|
||
assert word in translated_text
|
||
|
||
|
||
def test_remove_linebreaks(accepted):
|
||
test_obj = tt.TextDetector({}, accept_privacy=accepted)
|
||
test_obj.subdict["text"] = "This is \n a test."
|
||
test_obj.subdict["text_english"] = "This is \n another\n test."
|
||
test_obj.remove_linebreaks()
|
||
assert test_obj.subdict["text"] == "This is a test."
|
||
assert test_obj.subdict["text_english"] == "This is another test."
|
||
|
||
|
||
def test_text_summary(get_path, accepted):
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True, accept_privacy=accepted)
|
||
ref_file = get_path + "example_summary.txt"
|
||
with open(ref_file, "r", encoding="utf8") as file:
|
||
reference_text = file.read()
|
||
mydict["text_english"] = reference_text
|
||
test_obj.text_summary()
|
||
reference_summary = " I’m sorry, but I don’t want to be an emperor"
|
||
assert mydict["text_summary"] == reference_summary
|
||
|
||
|
||
def test_text_sentiment_transformers(accepted):
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True, accept_privacy=accepted)
|
||
mydict["text_english"] = "I am happy that the CI is working again."
|
||
test_obj.text_sentiment_transformers()
|
||
assert mydict["sentiment"] == "POSITIVE"
|
||
assert mydict["sentiment_score"] == pytest.approx(0.99, 0.02)
|
||
|
||
|
||
def test_text_ner(accepted):
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True, accept_privacy=accepted)
|
||
mydict["text_english"] = "Bill Gates was born in Seattle."
|
||
test_obj.text_ner()
|
||
assert mydict["entity"] == ["Bill Gates", "Seattle"]
|
||
assert mydict["entity_type"] == ["PER", "LOC"]
|
||
|
||
|
||
def test_init_csv_option(get_path):
|
||
test_obj = tt.TextAnalyzer(csv_path=get_path + "test.csv")
|
||
assert test_obj.csv_path == get_path + "test.csv"
|
||
assert test_obj.column_key == "text"
|
||
assert test_obj.csv_encoding == "utf-8"
|
||
test_obj = tt.TextAnalyzer(
|
||
csv_path=get_path + "test.csv", column_key="mytext", csv_encoding="utf-16"
|
||
)
|
||
assert test_obj.column_key == "mytext"
|
||
assert test_obj.csv_encoding == "utf-16"
|
||
with pytest.raises(ValueError):
|
||
tt.TextAnalyzer(csv_path=1.0)
|
||
with pytest.raises(ValueError):
|
||
tt.TextAnalyzer(csv_path="something")
|
||
with pytest.raises(FileNotFoundError):
|
||
tt.TextAnalyzer(csv_path=get_path + "test_no.csv")
|
||
with pytest.raises(ValueError):
|
||
tt.TextAnalyzer(csv_path=get_path + "test.csv", column_key=1.0)
|
||
with pytest.raises(ValueError):
|
||
tt.TextAnalyzer(csv_path=get_path + "test.csv", csv_encoding=1.0)
|
||
|
||
|
||
@pytest.mark.skipif(sys.platform == "win32", reason="Encoding different on Window")
|
||
def test_read_csv(get_path):
|
||
test_obj = tt.TextAnalyzer(csv_path=get_path + "test.csv")
|
||
test_obj.read_csv()
|
||
with open(get_path + "test_read_csv_ref.json", "r") as file:
|
||
ref_dict = json.load(file)
|
||
# we are assuming the order did not get jungled up
|
||
for (_, value_test), (_, value_ref) in zip(
|
||
test_obj.mydict.items(), ref_dict.items()
|
||
):
|
||
assert value_test["text"] == value_ref["text"]
|
||
# test with different encoding
|
||
test_obj = tt.TextAnalyzer(
|
||
csv_path=get_path + "test-utf16.csv", csv_encoding="utf-16"
|
||
)
|
||
test_obj.read_csv()
|
||
# we are assuming the order did not get jungled up
|
||
for (_, value_test), (_, value_ref) in zip(
|
||
test_obj.mydict.items(), ref_dict.items()
|
||
):
|
||
assert value_test["text"] == value_ref["text"]
|
||
|
||
|
||
def test_PostprocessText(set_testdict, get_path):
|
||
reference_dict = "THE ALGEBRAIC EIGENVALUE PROBLEM"
|
||
reference_df = "Mathematische Formelsammlung\nfür Ingenieure und Naturwissenschaftler\nMit zahlreichen Abbildungen und Rechenbeispielen\nund einer ausführlichen Integraltafel\n3., verbesserte Auflage"
|
||
img_numbers = ["IMG_3755", "IMG_3756", "IMG_3757"]
|
||
for image_ref in img_numbers:
|
||
ref_file = get_path + "text_" + image_ref + ".txt"
|
||
with open(ref_file, "r") as file:
|
||
reference_text = file.read()
|
||
set_testdict[image_ref]["text_english"] = reference_text
|
||
obj = tt.PostprocessText(mydict=set_testdict)
|
||
test_dict = obj.list_text_english[2].replace("\r", "")
|
||
assert test_dict == reference_dict
|
||
for key in set_testdict.keys():
|
||
set_testdict[key].pop("text_english")
|
||
with pytest.raises(ValueError):
|
||
tt.PostprocessText(mydict=set_testdict)
|
||
obj = tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out.csv")
|
||
# make sure test works on windows where end-of-line character is \r\n
|
||
test_df = obj.list_text_english[0].replace("\r", "")
|
||
assert test_df == reference_df
|
||
with pytest.raises(ValueError):
|
||
tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out_nokey.csv")
|
||
with pytest.raises(ValueError):
|
||
tt.PostprocessText()
|
||
|
||
|
||
def test_analyse_topic(get_path):
|
||
_, topic_df, most_frequent_topics = tt.PostprocessText(
|
||
use_csv=True, csv_path=get_path + "topic_analysis_test.csv"
|
||
).analyse_topic()
|
||
# since this is not deterministic we cannot be sure we get the same result twice
|
||
assert len(topic_df) == 2
|
||
assert topic_df["Name"].iloc[0] == "0_the_feat_of_is"
|
||
assert most_frequent_topics[0][0][0] == "the"
|