AMMICO/build/html/notebooks/Example summary.ipynb

2044 строки
52 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image summary and visual question answering"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:37:19.248809Z",
"iopub.status.busy": "2023-10-18T21:37:19.248470Z",
"iopub.status.idle": "2023-10-18T21:37:19.257477Z",
"shell.execute_reply": "2023-10-18T21:37:19.256914Z"
}
},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:37:19.260421Z",
"iopub.status.busy": "2023-10-18T21:37:19.260014Z",
"iopub.status.idle": "2023-10-18T21:37:29.773724Z",
"shell.execute_reply": "2023-10-18T21:37:29.773092Z"
},
"tags": []
},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.summary as sm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:37:29.778185Z",
"iopub.status.busy": "2023-10-18T21:37:29.776622Z",
"iopub.status.idle": "2023-10-18T21:37:29.782912Z",
"shell.execute_reply": "2023-10-18T21:37:29.782317Z"
},
"tags": []
},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"images = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:37:29.785859Z",
"iopub.status.busy": "2023-10-18T21:37:29.785428Z",
"iopub.status.idle": "2023-10-18T21:37:29.789559Z",
"shell.execute_reply": "2023-10-18T21:37:29.788992Z"
},
"tags": []
},
"outputs": [],
"source": [
"mydict = mutils.initialize_dict(images)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create captions for images and directly write to csv"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n",
"\n",
"The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic_summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:37:29.792451Z",
"iopub.status.busy": "2023-10-18T21:37:29.791927Z",
"iopub.status.idle": "2023-10-18T21:38:37.648735Z",
"shell.execute_reply": "2023-10-18T21:38:37.641235Z"
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/2.50G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 8.01M/2.50G [00:00<00:42, 62.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 16.3M/2.50G [00:00<00:35, 75.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 32.0M/2.50G [00:00<00:28, 92.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 44.8M/2.50G [00:00<00:24, 106MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 55.1M/2.50G [00:00<00:26, 100MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 67.7M/2.50G [00:00<00:23, 110MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 80.0M/2.50G [00:00<00:24, 108MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 96.9M/2.50G [00:00<00:20, 128MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 117M/2.50G [00:01<00:16, 152MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▌ | 132M/2.50G [00:01<00:17, 147MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 152M/2.50G [00:01<00:15, 164MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 169M/2.50G [00:01<00:14, 169MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 186M/2.50G [00:01<00:15, 160MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 202M/2.50G [00:01<00:15, 164MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▊ | 224M/2.50G [00:01<00:15, 156MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|▉ | 246M/2.50G [00:01<00:13, 176MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|█ | 263M/2.50G [00:01<00:15, 153MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█ | 286M/2.50G [00:02<00:13, 173MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 304M/2.50G [00:02<00:13, 174MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 327M/2.50G [00:02<00:12, 192MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▎ | 347M/2.50G [00:02<00:11, 196MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 367M/2.50G [00:02<00:11, 201MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 388M/2.50G [00:02<00:11, 205MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▌ | 408M/2.50G [00:02<00:11, 195MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 435M/2.50G [00:02<00:10, 219MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 456M/2.50G [00:02<00:10, 214MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▊ | 477M/2.50G [00:03<00:10, 212MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 497M/2.50G [00:03<00:11, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|██ | 516M/2.50G [00:03<00:11, 188MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 544M/2.50G [00:03<00:09, 217MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 565M/2.50G [00:03<00:10, 205MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 588M/2.50G [00:03<00:09, 215MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 614M/2.50G [00:03<00:08, 229MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▍ | 636M/2.50G [00:03<00:09, 208MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▌ | 656M/2.50G [00:03<00:09, 202MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 680M/2.50G [00:04<00:09, 215MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 708M/2.50G [00:04<00:08, 238MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▊ | 732M/2.50G [00:04<00:08, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▉ | 755M/2.50G [00:04<00:08, 236MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|███ | 778M/2.50G [00:04<00:08, 230MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███▏ | 805M/2.50G [00:04<00:07, 246MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 829M/2.50G [00:04<00:07, 238MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 857M/2.50G [00:04<00:07, 254MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 883M/2.50G [00:04<00:06, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 911M/2.50G [00:04<00:06, 271MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 937M/2.50G [00:05<00:06, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 966M/2.50G [00:05<00:06, 270MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▊ | 992M/2.50G [00:05<00:06, 247MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|███▉ | 1.00G/2.50G [00:05<00:06, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████ | 1.02G/2.50G [00:05<00:05, 271MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.05G/2.50G [00:05<00:05, 273MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 1.08G/2.50G [00:05<00:06, 230MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 1.10G/2.50G [00:05<00:06, 247MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 1.13G/2.50G [00:06<00:05, 256MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 1.15G/2.50G [00:06<00:05, 250MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.18G/2.50G [00:06<00:05, 262MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 1.21G/2.50G [00:06<00:05, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 1.23G/2.50G [00:06<00:05, 246MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|█████ | 1.26G/2.50G [00:06<00:05, 255MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 1.28G/2.50G [00:06<00:05, 260MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 1.31G/2.50G [00:07<00:10, 122MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 1.33G/2.50G [00:07<00:11, 110MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▍ | 1.37G/2.50G [00:07<00:08, 147MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 1.39G/2.50G [00:07<00:08, 145MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▋ | 1.41G/2.50G [00:07<00:08, 145MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 1.44G/2.50G [00:07<00:06, 169MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.46G/2.50G [00:08<00:05, 190MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 1.49G/2.50G [00:08<00:05, 205MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|██████ | 1.51G/2.50G [00:08<00:06, 167MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████▏ | 1.54G/2.50G [00:08<00:05, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 1.56G/2.50G [00:08<00:05, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 1.58G/2.50G [00:08<00:05, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 1.60G/2.50G [00:08<00:04, 211MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 1.63G/2.50G [00:08<00:04, 211MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▌ | 1.65G/2.50G [00:09<00:04, 221MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 1.67G/2.50G [00:09<00:04, 182MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 1.70G/2.50G [00:09<00:04, 213MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▊ | 1.72G/2.50G [00:09<00:03, 215MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|██████▉ | 1.74G/2.50G [00:09<00:03, 219MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|███████ | 1.76G/2.50G [00:09<00:04, 164MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████▏ | 1.79G/2.50G [00:09<00:04, 165MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.81G/2.50G [00:10<00:03, 190MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 1.84G/2.50G [00:10<00:03, 198MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 1.86G/2.50G [00:10<00:06, 110MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▌ | 1.89G/2.50G [00:10<00:04, 145MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▌ | 1.91G/2.50G [00:10<00:04, 154MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.93G/2.50G [00:10<00:04, 148MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.95G/2.50G [00:11<00:03, 182MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.97G/2.50G [00:11<00:03, 175MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|███████▉ | 2.00G/2.50G [00:11<00:02, 195MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 2.03G/2.50G [00:11<00:02, 223MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 2.05G/2.50G [00:11<00:02, 181MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.08G/2.50G [00:11<00:02, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 2.10G/2.50G [00:11<00:02, 181MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▌ | 2.13G/2.50G [00:11<00:01, 207MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 2.15G/2.50G [00:12<00:02, 177MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 2.17G/2.50G [00:12<00:02, 130MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.20G/2.50G [00:12<00:02, 160MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.22G/2.50G [00:12<00:02, 152MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▉ | 2.24G/2.50G [00:12<00:01, 176MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|█████████ | 2.26G/2.50G [00:12<00:01, 182MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.28G/2.50G [00:13<00:02, 113MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.30G/2.50G [00:13<00:01, 131MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.33G/2.50G [00:13<00:01, 166MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 2.36G/2.50G [00:13<00:00, 187MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▌| 2.38G/2.50G [00:13<00:00, 202MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 2.40G/2.50G [00:15<00:02, 47.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 2.42G/2.50G [00:15<00:01, 52.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 2.43G/2.50G [00:15<00:01, 59.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.45G/2.50G [00:15<00:00, 70.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.46G/2.50G [00:15<00:00, 80.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 2.48G/2.50G [00:15<00:00, 91.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 2.49G/2.50G [00:15<00:00, 102MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 2.50G/2.50G [00:15<00:00, 168MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/1.35G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 4.01M/1.35G [00:00<00:55, 26.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 8.01M/1.35G [00:00<00:43, 32.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 24.0M/1.35G [00:00<00:20, 69.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 32.0M/1.35G [00:00<00:19, 72.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 45.7M/1.35G [00:00<00:14, 94.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 56.0M/1.35G [00:00<00:14, 93.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▌ | 75.5M/1.35G [00:00<00:10, 126MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 96.0M/1.35G [00:00<00:09, 149MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 112M/1.35G [00:01<00:08, 154MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|█ | 139M/1.35G [00:01<00:06, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 165M/1.35G [00:01<00:05, 217MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▎ | 188M/1.35G [00:01<00:05, 222MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 209M/1.35G [00:01<00:06, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 237M/1.35G [00:01<00:05, 222MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 262M/1.35G [00:01<00:05, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 289M/1.35G [00:01<00:04, 245MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 313M/1.35G [00:02<00:06, 178MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 332M/1.35G [00:02<00:06, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▌ | 352M/1.35G [00:02<00:05, 188MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 376M/1.35G [00:02<00:05, 206MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▉ | 397M/1.35G [00:02<00:04, 207MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 421M/1.35G [00:02<00:04, 218MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 442M/1.35G [00:02<00:06, 145MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 472M/1.35G [00:02<00:05, 178MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 498M/1.35G [00:03<00:04, 201MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 521M/1.35G [00:03<00:04, 211MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▉ | 544M/1.35G [00:03<00:04, 214MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████▏ | 572M/1.35G [00:03<00:03, 235MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▎ | 601M/1.35G [00:03<00:03, 254MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 631M/1.35G [00:03<00:02, 270MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 657M/1.35G [00:03<00:03, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 682M/1.35G [00:03<00:03, 207MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 711M/1.35G [00:03<00:03, 230MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 736M/1.35G [00:04<00:02, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 760M/1.35G [00:04<00:03, 209MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 784M/1.35G [00:04<00:02, 219MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 812M/1.35G [00:04<00:02, 240MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 836M/1.35G [00:04<00:03, 151MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 860M/1.35G [00:04<00:03, 170MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 882M/1.35G [00:04<00:02, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▌ | 905M/1.35G [00:05<00:02, 195MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 926M/1.35G [00:05<00:02, 164MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 953M/1.35G [00:05<00:02, 192MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 974M/1.35G [00:05<00:02, 161MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 998M/1.35G [00:05<00:02, 179MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 0.99G/1.35G [00:05<00:02, 174MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▌ | 1.02G/1.35G [00:05<00:01, 196MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.04G/1.35G [00:06<00:01, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.07G/1.35G [00:06<00:01, 226MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 1.09G/1.35G [00:06<00:01, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 1.12G/1.35G [00:06<00:00, 248MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▍ | 1.14G/1.35G [00:06<00:00, 249MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▋ | 1.16G/1.35G [00:06<00:01, 157MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 1.19G/1.35G [00:06<00:00, 177MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 1.21G/1.35G [00:06<00:00, 176MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 1.23G/1.35G [00:07<00:00, 189MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 1.25G/1.35G [00:07<00:00, 197MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▍| 1.28G/1.35G [00:07<00:00, 211MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 1.31G/1.35G [00:07<00:00, 239MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 1.33G/1.35G [00:07<00:00, 251MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 1.35G/1.35G [00:07<00:00, 192MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"obj = sm.SummaryDetector(mydict)\n",
"summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n",
"# summary_model, summary_vis_processors = mutils.load_model(\"large\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:38:37.702479Z",
"iopub.status.busy": "2023-10-18T21:38:37.700969Z",
"iopub.status.idle": "2023-10-18T21:39:17.189784Z",
"shell.execute_reply": "2023-10-18T21:39:17.186250Z"
},
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "analyse_image() got an unexpected keyword argument 'summary_model'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_image\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msummary_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msummary_vis_processors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_vis_processors\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mTypeError\u001b[0m: analyse_image() got an unexpected keyword argument 'summary_model'"
]
}
],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n",
" summary_model=summary_model, summary_vis_processors=summary_vis_processors\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"Convert the dictionary of dictionarys into a dictionary with lists:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.310131Z",
"iopub.status.busy": "2023-10-18T21:39:17.308636Z",
"iopub.status.idle": "2023-10-18T21:39:17.436639Z",
"shell.execute_reply": "2023-10-18T21:39:17.435997Z"
},
"tags": []
},
"outputs": [],
"source": [
"outdict = mutils.append_data_to_dict(mydict)\n",
"df = mutils.dump_df(outdict)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.446712Z",
"iopub.status.busy": "2023-10-18T21:39:17.446078Z",
"iopub.status.idle": "2023-10-18T21:39:17.590238Z",
"shell.execute_reply": "2023-10-18T21:39:17.589231Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>102141_2_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>102730_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>106349S_por</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename\n",
"0 102141_2_eng\n",
"1 102730_eng\n",
"2 106349S_por"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(10)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.620825Z",
"iopub.status.busy": "2023-10-18T21:39:17.620274Z",
"iopub.status.idle": "2023-10-18T21:39:17.675192Z",
"shell.execute_reply": "2023-10-18T21:39:17.674427Z"
}
},
"outputs": [],
"source": [
"df.to_csv(\"data_out.csv\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manually inspect the summaries\n",
"\n",
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n",
"\n",
"`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n",
"\n",
"`3_non-deterministic_summary` - 3 different summarys examples that change from run to run (analyse_image). "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.682661Z",
"iopub.status.busy": "2023-10-18T21:39:17.681750Z",
"iopub.status.idle": "2023-10-18T21:39:17.715332Z",
"shell.execute_reply": "2023-10-18T21:39:17.714643Z"
},
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "__init__() got an unexpected keyword argument 'identify'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
]
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate answers to free-form questions about images written in natural language. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Set the list of questions as a list of strings:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.731323Z",
"iopub.status.busy": "2023-10-18T21:39:17.730891Z",
"iopub.status.idle": "2023-10-18T21:39:17.734630Z",
"shell.execute_reply": "2023-10-18T21:39:17.733961Z"
}
},
"outputs": [],
"source": [
"list_of_questions = [\n",
" \"How many persons on the picture?\",\n",
" \"Are there any politicians in the picture?\",\n",
" \"Does the picture show something from medicine?\",\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Explore the analysis using the interface:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.744289Z",
"iopub.status.busy": "2023-10-18T21:39:17.743742Z",
"iopub.status.idle": "2023-10-18T21:39:17.773216Z",
"shell.execute_reply": "2023-10-18T21:39:17.772587Z"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "__init__() got an unexpected keyword argument 'identify'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
]
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Or directly analyze for further processing\n",
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:17.781865Z",
"iopub.status.busy": "2023-10-18T21:39:17.781433Z",
"iopub.status.idle": "2023-10-18T21:39:53.239520Z",
"shell.execute_reply": "2023-10-18T21:39:53.238193Z"
}
},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: '102141_2_eng'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[13], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_questions\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlist_of_questions\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:368\u001b[0m, in \u001b[0;36mSummaryDetector.analyse_questions\u001b[0;34m(self, list_of_questions, consequential_questions)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(list_of_questions) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 367\u001b[0m path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msubdict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfilename\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m--> 368\u001b[0m raw_image \u001b[38;5;241m=\u001b[39m \u001b[43mImage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mconvert(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRGB\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 369\u001b[0m image \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 370\u001b[0m vis_processors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124meval\u001b[39m\u001b[38;5;124m\"\u001b[39m](raw_image)\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_device)\n\u001b[1;32m 371\u001b[0m )\n\u001b[1;32m 372\u001b[0m question_batch \u001b[38;5;241m=\u001b[39m []\n",
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/PIL/Image.py:3243\u001b[0m, in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m 3240\u001b[0m filename \u001b[38;5;241m=\u001b[39m fp\n\u001b[1;32m 3242\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filename:\n\u001b[0;32m-> 3243\u001b[0m fp \u001b[38;5;241m=\u001b[39m \u001b[43mbuiltins\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3244\u001b[0m exclusive_fp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 3246\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '102141_2_eng'"
]
}
],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert to dataframe and write csv\n",
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:53.254397Z",
"iopub.status.busy": "2023-10-18T21:39:53.253916Z",
"iopub.status.idle": "2023-10-18T21:39:53.281013Z",
"shell.execute_reply": "2023-10-18T21:39:53.280384Z"
}
},
"outputs": [],
"source": [
"outdict2 = mutils.append_data_to_dict(mydict)\n",
"df2 = mutils.dump_df(outdict2)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:53.285645Z",
"iopub.status.busy": "2023-10-18T21:39:53.285191Z",
"iopub.status.idle": "2023-10-18T21:39:53.318873Z",
"shell.execute_reply": "2023-10-18T21:39:53.318301Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>102141_2_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>102730_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>106349S_por</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename\n",
"0 102141_2_eng\n",
"1 102730_eng\n",
"2 106349S_por"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2023-10-18T21:39:53.322709Z",
"iopub.status.busy": "2023-10-18T21:39:53.322053Z",
"iopub.status.idle": "2023-10-18T21:39:53.335776Z",
"shell.execute_reply": "2023-10-18T21:39:53.334627Z"
}
},
"outputs": [],
"source": [
"df2.to_csv(\"data_out2.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
},
"vscode": {
"interpreter": {
"hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}