AMMICO/source/notebooks/Example colors.ipynb

179 строки
4.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Color Detector\n",
"\n",
"\n",
"\n",
"This notebook shows primary color analysis of color image using K-Means algorithm.\n",
"The output are N primary colors and their corresponding percentage.\n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We select a subset of image files to try the color analysis on, see the `limit` keyword. The `find_files` function finds image files within a given directory:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"image_dict = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
"Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(image_dict)\n",
"analysis_explorer.run_server(port = 8057)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for key in image_dict.keys():\n",
" image_dict[key] = ammico.colors.ColorDetector(image_dict[key]).analyse_image()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image_df = ammico.get_dataframe(image_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image_df.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file - here you should provide a file path and file name for the csv file to be written."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image_df.to_csv(\"data_out.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}