зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
432 строки
12 KiB
Python
432 строки
12 KiB
Python
import pytest
|
|
import math
|
|
from PIL import Image
|
|
import numpy
|
|
from torch import device, cuda, no_grad
|
|
from lavis.models import load_model_and_preprocess
|
|
import misinformation.multimodal_search as ms
|
|
|
|
TEST_IMAGE_1 = "./test/data/d755771b-225e-432f-802e-fb8dc850fff7.png"
|
|
TEST_IMAGE_2 = "./test/data/IMG_2746.png"
|
|
TEST_IMAGE_3 = "./test/data/IMG_2750.png"
|
|
TEST_IMAGE_4 = "./test/data/IMG_2805.png"
|
|
TEST_IMAGE_5 = "./test/data/IMG_2806.png"
|
|
TEST_IMAGE_6 = "./test/data/IMG_2807.png"
|
|
TEST_IMAGE_7 = "./test/data/IMG_2808.png"
|
|
TEST_IMAGE_8 = "./test/data/IMG_2809.png"
|
|
TEST_IMAGE_9 = "./test/data/IMG_3755.jpg"
|
|
TEST_IMAGE_10 = "./test/data/IMG_3756.jpg"
|
|
TEST_IMAGE_11 = "./test/data/IMG_3757.jpg"
|
|
TEST_IMAGE_12 = "./test/data/pic1.png"
|
|
related_error = 1e-3
|
|
gpu_is_not_available = not cuda.is_available()
|
|
|
|
|
|
cuda.empty_cache()
|
|
|
|
|
|
def test_read_img():
|
|
my_dict = {}
|
|
test_img = ms.MultimodalSearch.read_img(my_dict, TEST_IMAGE_2)
|
|
assert list(numpy.array(test_img)[257][34]) == [70, 66, 63]
|
|
|
|
|
|
pre_proc_pic_blip2_blip_albef = [
|
|
-1.0039474964141846,
|
|
-1.0039474964141846,
|
|
-0.8433647751808167,
|
|
-0.6097899675369263,
|
|
-0.5951915383338928,
|
|
-0.6243883967399597,
|
|
-0.6827820539474487,
|
|
-0.6097899675369263,
|
|
-0.7119789123535156,
|
|
-1.0623412132263184,
|
|
]
|
|
pre_proc_pic_clip_vitl14 = [
|
|
-0.7995694875717163,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.7703726291656494,
|
|
-0.7703726291656494,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.7703726291656494,
|
|
-0.7703726291656494,
|
|
-0.7703726291656494,
|
|
]
|
|
|
|
pre_proc_pic_clip_vitl14_336 = [
|
|
-0.7995694875717163,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.7849710583686829,
|
|
-0.9163569211959839,
|
|
-1.149931788444519,
|
|
-1.0039474964141846,
|
|
]
|
|
|
|
pre_proc_text_blip2_blip_albef = (
|
|
"the bird sat on a tree located at the intersection of 23rd and 43rd streets"
|
|
)
|
|
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336 = (
|
|
"The bird sat on a tree located at the intersection of 23rd and 43rd streets."
|
|
)
|
|
|
|
pre_extracted_feature_img_blip2 = [
|
|
0.04566730558872223,
|
|
-0.042554520070552826,
|
|
-0.06970272958278656,
|
|
-0.009771779179573059,
|
|
0.01446065679192543,
|
|
0.10173682868480682,
|
|
0.007092420011758804,
|
|
-0.020045937970280647,
|
|
0.12923966348171234,
|
|
0.006452132016420364,
|
|
]
|
|
|
|
pre_extracted_feature_img_blip = [
|
|
-0.02480311505496502,
|
|
0.05037587881088257,
|
|
0.039517853409051895,
|
|
-0.06994109600782394,
|
|
-0.12886561453342438,
|
|
0.047039758414030075,
|
|
-0.11620642244815826,
|
|
-0.003398326924070716,
|
|
-0.07324369996786118,
|
|
0.06994668394327164,
|
|
]
|
|
|
|
pre_extracted_feature_img_albef = [
|
|
0.08971136063337326,
|
|
-0.10915573686361313,
|
|
-0.020636577159166336,
|
|
0.048121627420186996,
|
|
-0.05943416804075241,
|
|
-0.129856139421463,
|
|
-0.0034469354432076216,
|
|
0.017888527363538742,
|
|
-0.03284582123160362,
|
|
-0.1037328764796257,
|
|
]
|
|
|
|
pre_extracted_feature_img_clip = [
|
|
0.01621132344007492,
|
|
-0.004035486374050379,
|
|
-0.04304071143269539,
|
|
-0.03459808602929115,
|
|
0.016922621056437492,
|
|
-0.025056276470422745,
|
|
-0.04178355261683464,
|
|
0.02165347896516323,
|
|
-0.003224249929189682,
|
|
0.020485712215304375,
|
|
]
|
|
|
|
pre_extracted_feature_img_parsing_clip = [
|
|
0.01621132344007492,
|
|
-0.004035486374050379,
|
|
-0.04304071143269539,
|
|
-0.03459808602929115,
|
|
0.016922621056437492,
|
|
-0.025056276470422745,
|
|
-0.04178355261683464,
|
|
0.02165347896516323,
|
|
-0.003224249929189682,
|
|
0.020485712215304375,
|
|
]
|
|
|
|
pre_extracted_feature_img_clip_vitl14 = [
|
|
-0.023943455889821053,
|
|
-0.021703708916902542,
|
|
0.035043686628341675,
|
|
0.019495919346809387,
|
|
0.014351222664117813,
|
|
-0.008634116500616074,
|
|
0.01610446907579899,
|
|
-0.003426523646339774,
|
|
0.011931191198527813,
|
|
0.0008691544644534588,
|
|
]
|
|
|
|
pre_extracted_feature_img_clip_vitl14_336 = [
|
|
-0.009511193260550499,
|
|
-0.012618942186236382,
|
|
0.034754861146211624,
|
|
0.016356879845261574,
|
|
-0.0011549904011189938,
|
|
-0.008054453879594803,
|
|
0.0011990377679467201,
|
|
-0.010806051082909107,
|
|
0.00140204350464046,
|
|
0.0006861367146484554,
|
|
]
|
|
|
|
pre_extracted_feature_text_blip2 = [
|
|
-0.1384204626083374,
|
|
-0.008662976324558258,
|
|
0.006269007455557585,
|
|
0.03151319921016693,
|
|
0.060558050870895386,
|
|
-0.03230040520429611,
|
|
0.015861615538597107,
|
|
-0.11856459826231003,
|
|
-0.058296192437410355,
|
|
0.03699290752410889,
|
|
]
|
|
|
|
pre_extracted_feature_text_blip = [
|
|
0.0118643119931221,
|
|
-0.01291718054562807,
|
|
-0.0009687161073088646,
|
|
0.01428765058517456,
|
|
-0.05591396614909172,
|
|
0.07386433333158493,
|
|
-0.11475936323404312,
|
|
0.01620068959891796,
|
|
0.0062415082938969135,
|
|
0.0034833091776818037,
|
|
]
|
|
|
|
pre_extracted_feature_text_albef = [
|
|
-0.06229640915989876,
|
|
0.11278597265481949,
|
|
0.06628583371639252,
|
|
0.1649140566587448,
|
|
0.068987175822258,
|
|
0.006291372701525688,
|
|
0.03244050219655037,
|
|
-0.049556829035282135,
|
|
0.050752390176057816,
|
|
-0.0421440489590168,
|
|
]
|
|
|
|
pre_extracted_feature_text_clip = [
|
|
0.018169036135077477,
|
|
0.03634127229452133,
|
|
0.025660742074251175,
|
|
0.009149895049631596,
|
|
-0.035570453852415085,
|
|
0.033126577734947205,
|
|
-0.004808237310498953,
|
|
-0.0031453112605959177,
|
|
-0.02194291725754738,
|
|
0.024019461125135422,
|
|
]
|
|
|
|
pre_extracted_feature_text_clip_vitl14 = [
|
|
-0.0055463071912527084,
|
|
0.006908962037414312,
|
|
-0.019450219348073006,
|
|
-0.018097277730703354,
|
|
0.017567576840519905,
|
|
-0.03828490898013115,
|
|
-0.03781530633568764,
|
|
-0.023951737210154533,
|
|
0.01365653332322836,
|
|
-0.02341713197529316,
|
|
]
|
|
|
|
pre_extracted_feature_text_clip_vitl14_336 = [
|
|
-0.008720514364540577,
|
|
0.005284308455884457,
|
|
-0.021116750314831734,
|
|
-0.018112430348992348,
|
|
0.01685470901429653,
|
|
-0.03517491742968559,
|
|
-0.038612402975559235,
|
|
-0.021867064759135246,
|
|
0.01685977540910244,
|
|
-0.023832324892282486,
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
(
|
|
"pre_multimodal_device",
|
|
"pre_model",
|
|
"pre_proc_pic",
|
|
"pre_proc_text",
|
|
"pre_extracted_feature_img",
|
|
"pre_extracted_feature_text",
|
|
),
|
|
[
|
|
pytest.param(
|
|
device("cuda"),
|
|
"blip2",
|
|
pre_proc_pic_blip2_blip_albef,
|
|
pre_proc_text_blip2_blip_albef,
|
|
pre_extracted_feature_img_blip2,
|
|
pre_extracted_feature_text_blip2,
|
|
marks=pytest.mark.skipif(
|
|
gpu_is_not_available, reason="gpu_is_not_availible"
|
|
),
|
|
),
|
|
(
|
|
device("cpu"),
|
|
"blip",
|
|
pre_proc_pic_blip2_blip_albef,
|
|
pre_proc_text_blip2_blip_albef,
|
|
pre_extracted_feature_img_blip,
|
|
pre_extracted_feature_text_blip,
|
|
),
|
|
pytest.param(
|
|
device("cuda"),
|
|
"blip",
|
|
pre_proc_pic_blip2_blip_albef,
|
|
pre_proc_text_blip2_blip_albef,
|
|
pre_extracted_feature_img_blip,
|
|
pre_extracted_feature_text_blip,
|
|
marks=pytest.mark.skipif(
|
|
gpu_is_not_available, reason="gpu_is_not_availible"
|
|
),
|
|
),
|
|
(
|
|
device("cpu"),
|
|
"albef",
|
|
pre_proc_pic_blip2_blip_albef,
|
|
pre_proc_text_blip2_blip_albef,
|
|
pre_extracted_feature_img_albef,
|
|
pre_extracted_feature_text_albef,
|
|
),
|
|
pytest.param(
|
|
device("cuda"),
|
|
"albef",
|
|
pre_proc_pic_blip2_blip_albef,
|
|
pre_proc_text_blip2_blip_albef,
|
|
pre_extracted_feature_img_albef,
|
|
pre_extracted_feature_text_albef,
|
|
marks=pytest.mark.skipif(
|
|
gpu_is_not_available, reason="gpu_is_not_availible"
|
|
),
|
|
),
|
|
(
|
|
device("cpu"),
|
|
"clip_base",
|
|
pre_proc_pic_clip_vitl14,
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336,
|
|
pre_extracted_feature_img_clip,
|
|
pre_extracted_feature_text_clip,
|
|
),
|
|
pytest.param(
|
|
device("cuda"),
|
|
"clip_base",
|
|
pre_proc_pic_clip_vitl14,
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336,
|
|
pre_extracted_feature_img_clip,
|
|
pre_extracted_feature_text_clip,
|
|
marks=pytest.mark.skipif(
|
|
gpu_is_not_available, reason="gpu_is_not_availible"
|
|
),
|
|
),
|
|
(
|
|
device("cpu"),
|
|
"clip_vitl14",
|
|
pre_proc_pic_clip_vitl14,
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336,
|
|
pre_extracted_feature_img_clip_vitl14,
|
|
pre_extracted_feature_text_clip_vitl14,
|
|
),
|
|
pytest.param(
|
|
device("cuda"),
|
|
"clip_vitl14",
|
|
pre_proc_pic_clip_vitl14,
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336,
|
|
pre_extracted_feature_img_clip_vitl14,
|
|
pre_extracted_feature_text_clip_vitl14,
|
|
marks=pytest.mark.skipif(
|
|
gpu_is_not_available, reason="gpu_is_not_availible"
|
|
),
|
|
),
|
|
(
|
|
device("cpu"),
|
|
"clip_vitl14_336",
|
|
pre_proc_pic_clip_vitl14_336,
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336,
|
|
pre_extracted_feature_img_clip_vitl14_336,
|
|
pre_extracted_feature_text_clip_vitl14_336,
|
|
),
|
|
pytest.param(
|
|
device("cuda"),
|
|
"clip_vitl14_336",
|
|
pre_proc_pic_clip_vitl14_336,
|
|
pre_proc_text_clip_clip_vitl14_clip_vitl14_336,
|
|
pre_extracted_feature_img_clip_vitl14_336,
|
|
pre_extracted_feature_text_clip_vitl14_336,
|
|
marks=pytest.mark.skipif(
|
|
gpu_is_not_available, reason="gpu_is_not_availible"
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_parsing_images(
|
|
pre_multimodal_device,
|
|
pre_model,
|
|
pre_proc_pic,
|
|
pre_proc_text,
|
|
pre_extracted_feature_img,
|
|
pre_extracted_feature_text,
|
|
):
|
|
mydict = {
|
|
"IMG_2746": {"filename": "./test/data/IMG_2746.png"},
|
|
"IMG_2750": {"filename": "./test/data/IMG_2750.png"},
|
|
}
|
|
ms.MultimodalSearch.multimodal_device = pre_multimodal_device
|
|
(
|
|
model,
|
|
vis_processor,
|
|
txt_processor,
|
|
image_keys,
|
|
image_names,
|
|
features_image_stacked,
|
|
) = ms.MultimodalSearch.parsing_images(mydict, pre_model)
|
|
|
|
for i, num in zip(range(10), features_image_stacked[0, 10:20].tolist()):
|
|
assert (
|
|
math.isclose(num, pre_extracted_feature_img[i], rel_tol=related_error)
|
|
is True
|
|
)
|
|
|
|
test_pic = Image.open(TEST_IMAGE_2).convert("RGB")
|
|
test_querry = (
|
|
"The bird sat on a tree located at the intersection of 23rd and 43rd streets."
|
|
)
|
|
processed_pic = (
|
|
vis_processor["eval"](test_pic).unsqueeze(0).to(pre_multimodal_device)
|
|
)
|
|
processed_text = txt_processor["eval"](test_querry)
|
|
|
|
for i, num in zip(range(10), processed_pic[0, 0, 0, 25:35].tolist()):
|
|
assert math.isclose(num, pre_proc_pic[i], rel_tol=related_error) is True
|
|
|
|
assert processed_text == pre_proc_text
|
|
|
|
search_query = [
|
|
{"text_input": test_querry},
|
|
{"image": TEST_IMAGE_2},
|
|
]
|
|
multi_features_stacked = ms.MultimodalSearch.querys_processing(
|
|
mydict, search_query, model, txt_processor, vis_processor, pre_model
|
|
)
|
|
|
|
for i, num in zip(range(10), multi_features_stacked[0, 10:20].tolist()):
|
|
assert (
|
|
math.isclose(num, pre_extracted_feature_text[i], rel_tol=related_error)
|
|
is True
|
|
)
|
|
|
|
for i, num in zip(range(10), multi_features_stacked[1, 10:20].tolist()):
|
|
assert (
|
|
math.isclose(num, pre_extracted_feature_img[i], rel_tol=related_error)
|
|
is True
|
|
)
|
|
|
|
del model, vis_processor, txt_processor
|
|
cuda.empty_cache()
|