зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 13:06:04 +02:00
127 строки
4.2 KiB
Python
127 строки
4.2 KiB
Python
import torch
|
|
import warnings
|
|
from transformers import (
|
|
Qwen2_5_VLForConditionalGeneration,
|
|
AutoProcessor,
|
|
BitsAndBytesConfig,
|
|
AutoTokenizer,
|
|
)
|
|
from typing import Optional
|
|
|
|
|
|
class MultimodalSummaryModel:
|
|
DEFAULT_CUDA_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
|
DEFAULT_CPU_MODEL = "Qwen/Qwen2.5-VL-3B-Instruct"
|
|
|
|
def __init__(
|
|
self,
|
|
model_id: Optional[str] = None,
|
|
device: Optional[str] = None,
|
|
cache_dir: Optional[str] = None,
|
|
) -> None:
|
|
"""
|
|
Class for QWEN-2.5-VL model loading and inference.
|
|
Args:
|
|
model_id: Type of model to load, defaults to a smaller version for CPU if device is "cpu".
|
|
device: "cuda" or "cpu" (auto-detected when None).
|
|
cache_dir: huggingface cache dir (optional).
|
|
"""
|
|
self.device = self._resolve_device(device)
|
|
|
|
if model_id is not None and model_id not in (
|
|
self.DEFAULT_CUDA_MODEL,
|
|
self.DEFAULT_CPU_MODEL,
|
|
):
|
|
raise ValueError(
|
|
f"model_id must be one of {self.DEFAULT_CUDA_MODEL} or {self.DEFAULT_CPU_MODEL}"
|
|
)
|
|
|
|
self.model_id = model_id or (
|
|
self.DEFAULT_CUDA_MODEL if self.device == "cuda" else self.DEFAULT_CPU_MODEL
|
|
)
|
|
|
|
self.cache_dir = cache_dir
|
|
self._trust_remote_code = True
|
|
self._quantize = True
|
|
|
|
self.model = None
|
|
self.processor = None
|
|
self.tokenizer = None
|
|
|
|
self._load_model_and_processor()
|
|
|
|
@staticmethod
|
|
def _resolve_device(device: Optional[str]) -> str:
|
|
if device is None:
|
|
return "cuda" if torch.cuda.is_available() else "cpu"
|
|
if device.lower() not in ("cuda", "cpu"):
|
|
raise ValueError("device must be 'cuda' or 'cpu'")
|
|
if device.lower() == "cuda" and not torch.cuda.is_available():
|
|
warnings.warn(
|
|
"Although 'cuda' was requested, no CUDA device is available. Using CPU instead.",
|
|
RuntimeWarning,
|
|
stacklevel=2,
|
|
)
|
|
return "cpu"
|
|
return device.lower()
|
|
|
|
def _load_model_and_processor(self):
|
|
load_kwargs = {"trust_remote_code": self._trust_remote_code, "use_cache": True}
|
|
if self.cache_dir:
|
|
load_kwargs["cache_dir"] = self.cache_dir
|
|
|
|
self.processor = AutoProcessor.from_pretrained(
|
|
self.model_id, padding_side="left", **load_kwargs
|
|
)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, **load_kwargs)
|
|
|
|
if self.device == "cuda":
|
|
compute_dtype = (
|
|
torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
|
)
|
|
bnb_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_use_double_quant=True,
|
|
bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_compute_dtype=compute_dtype,
|
|
)
|
|
load_kwargs["quantization_config"] = bnb_config
|
|
load_kwargs["device_map"] = "auto"
|
|
|
|
else:
|
|
load_kwargs.pop("quantization_config", None)
|
|
load_kwargs.pop("device_map", None)
|
|
|
|
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
self.model_id, **load_kwargs
|
|
)
|
|
self.model.eval()
|
|
|
|
def _close(self) -> None:
|
|
"""Free model resources (helpful in long-running processes)."""
|
|
try:
|
|
if self.model is not None:
|
|
del self.model
|
|
self.model = None
|
|
if self.processor is not None:
|
|
del self.processor
|
|
self.processor = None
|
|
if self.tokenizer is not None:
|
|
del self.tokenizer
|
|
self.tokenizer = None
|
|
finally:
|
|
try:
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
except Exception as e:
|
|
warnings.warn(
|
|
"Failed to empty CUDA cache. This is not critical, but may lead to memory lingering: "
|
|
f"{e!r}",
|
|
RuntimeWarning,
|
|
stacklevel=2,
|
|
)
|
|
|
|
def close(self) -> None:
|
|
"""Free model resources (helpful in long-running processes)."""
|
|
self._close()
|