AMMICO/misinformation/summary.py
2023-01-27 14:04:54 +01:00

64 строки
2.6 KiB
Python

from misinformation.utils import AnalysisMethod
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
class SummaryDetector(AnalysisMethod):
def __init__(
self, subdict: dict
) -> None:
super().__init__(subdict)
self.subdict.update(self.set_keys())
self.image_summary = {
"const_image_summary": None,
"3_non-deterministic summary": None,
}
summary_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device
)
def set_keys(self) -> dict:
params = {
"const_image_summary": None,
"3_non-deterministic summary": None,
}
return params
def analyse_image(self):
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = self.summary_vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
self.image_summary["const_image_summary"] = self.summary_model.generate({"image": image})[0]
self.image_summary["3_non-deterministic summary"] = self.summary_model.generate({"image": image}, use_nucleus_sampling=True, num_captions=3)
for key in self.image_summary:
self.subdict[key] = self.image_summary[key]
return self.subdict
summary_VQA_model, summary_VQA_vis_processors, summary_VQA_txt_processors = load_model_and_preprocess(name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device)
def analyse_questions(self, list_of_questions):
if (len(list_of_questions)>0):
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = self.summary_VQA_vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
question_batch =[]
for quest in list_of_questions:
question_batch.append(self.summary_VQA_txt_processors["eval"](quest))
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
answers_batch = self.summary_VQA_model.predict_answers(samples={"image": image_batch, "text_input": question_batch}, inference_method="generate")
for q,a in zip(question_batch,answers_batch):
self.image_summary[q] = a
for key in self.image_summary:
self.subdict[key] = self.image_summary[key]
else:
print("Please, enter list of questions")
return self.subdict