зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
* update notebook * comments * add jupyterlab * add text analysis capability * add bool in tests * add dependencies and spelling test * add test sentiment * update black pre-commit dependency for native nb support * update black version, find better sentiment test * test analyse_image
211 строки
4.2 KiB
Plaintext
Generated
211 строки
4.2 KiB
Plaintext
Generated
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "dcaa3da1",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Notebook for text extraction on image\n",
|
|
"Inga Ulusoy, SSC, July 2022"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cf362e60",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"from IPython.display import Image, display\n",
|
|
"import misinformation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6da3a7aa",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"images = misinformation.find_files(path=\"../data/images-text/\", limit=1000)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bf811ce0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for i in images[0:10]:\n",
|
|
" display(Image(filename=i))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8b32409f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"mydict = misinformation.utils.initialize_dict(images[0:10])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3be954ef-d31f-4e4d-857c-c14d5fda91f1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"mydict"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7b8b929f",
|
|
"metadata": {},
|
|
"source": [
|
|
"# google cloud vision API\n",
|
|
"First 1000 images per month are free."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cbf74c0b-52fe-4fb8-b617-f18611e8f986",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"os.environ[\n",
|
|
" \"GOOGLE_APPLICATION_CREDENTIALS\"\n",
|
|
"] = \"../data/misinformation-campaign-981aa55a3b13.json\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0891b795-c7fe-454c-a45d-45fadf788142",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Inspect the elements per image"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7c6ecc88",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"misinformation.explore_analysis(mydict, identify=\"text-on-image\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9c3e72b5-0e57-4019-b45e-3e36a74e7f52",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Or directly analyze for further processing"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "365c78b1-7ff4-4213-86fa-6a0a2d05198f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for key in mydict:\n",
|
|
" print(key)\n",
|
|
" mydict[key] = misinformation.text.TextDetector(mydict[key]).analyse_image()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c978fdb4-1f3a-4b78-b6ff-79c6e8a6fe82",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(mydict[\"109237S_spa\"][\"text_clean\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3c063eda",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Convert to dataframe and write csv"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5709c2cd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"outdict = misinformation.utils.append_data_to_dict(mydict)\n",
|
|
"df = misinformation.utils.dump_df(outdict)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c4f05637",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# check the dataframe\n",
|
|
"df.head(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bf6c9ddb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Write the csv\n",
|
|
"df.to_csv(\"./data_out.csv\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "568537df",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.0"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|