AMMICO/notebooks/get-text-from-image.ipynb
Inga Ulusoy 54728e02bb
Text cleanup and sentiment analysis (#49)
* update notebook

* comments

* add jupyterlab

* add text analysis capability

* add bool in tests

* add dependencies and spelling test

* add test sentiment

* update black pre-commit dependency for native nb support

* update black version, find better sentiment test

* test analyse_image
2023-01-11 12:58:02 +01:00

211 строки
4.2 KiB
Plaintext
Generated

{
"cells": [
{
"cell_type": "markdown",
"id": "dcaa3da1",
"metadata": {},
"source": [
"# Notebook for text extraction on image\n",
"Inga Ulusoy, SSC, July 2022"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf362e60",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from IPython.display import Image, display\n",
"import misinformation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6da3a7aa",
"metadata": {},
"outputs": [],
"source": [
"images = misinformation.find_files(path=\"../data/images-text/\", limit=1000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf811ce0",
"metadata": {},
"outputs": [],
"source": [
"for i in images[0:10]:\n",
" display(Image(filename=i))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b32409f",
"metadata": {},
"outputs": [],
"source": [
"mydict = misinformation.utils.initialize_dict(images[0:10])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3be954ef-d31f-4e4d-857c-c14d5fda91f1",
"metadata": {},
"outputs": [],
"source": [
"mydict"
]
},
{
"cell_type": "markdown",
"id": "7b8b929f",
"metadata": {},
"source": [
"# google cloud vision API\n",
"First 1000 images per month are free."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cbf74c0b-52fe-4fb8-b617-f18611e8f986",
"metadata": {},
"outputs": [],
"source": [
"os.environ[\n",
" \"GOOGLE_APPLICATION_CREDENTIALS\"\n",
"] = \"../data/misinformation-campaign-981aa55a3b13.json\""
]
},
{
"cell_type": "markdown",
"id": "0891b795-c7fe-454c-a45d-45fadf788142",
"metadata": {},
"source": [
"## Inspect the elements per image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c6ecc88",
"metadata": {},
"outputs": [],
"source": [
"misinformation.explore_analysis(mydict, identify=\"text-on-image\")"
]
},
{
"cell_type": "markdown",
"id": "9c3e72b5-0e57-4019-b45e-3e36a74e7f52",
"metadata": {},
"source": [
"## Or directly analyze for further processing"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "365c78b1-7ff4-4213-86fa-6a0a2d05198f",
"metadata": {},
"outputs": [],
"source": [
"for key in mydict:\n",
" print(key)\n",
" mydict[key] = misinformation.text.TextDetector(mydict[key]).analyse_image()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c978fdb4-1f3a-4b78-b6ff-79c6e8a6fe82",
"metadata": {},
"outputs": [],
"source": [
"print(mydict[\"109237S_spa\"][\"text_clean\"])"
]
},
{
"cell_type": "markdown",
"id": "3c063eda",
"metadata": {},
"source": [
"## Convert to dataframe and write csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5709c2cd",
"metadata": {},
"outputs": [],
"source": [
"outdict = misinformation.utils.append_data_to_dict(mydict)\n",
"df = misinformation.utils.dump_df(outdict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4f05637",
"metadata": {},
"outputs": [],
"source": [
"# check the dataframe\n",
"df.head(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf6c9ddb",
"metadata": {},
"outputs": [],
"source": [
"# Write the csv\n",
"df.to_csv(\"./data_out.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "568537df",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
},
"vscode": {
"interpreter": {
"hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}