зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 05:26:05 +02:00
* add image summary notebook * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * pin deepface version to avoid bug with progress bar after update * update actions version for checkout and python * test ci without lavis * no lavis for ci test * merging * return lavis * change lavis to salesforce-lavis * change pycocotools install method * change pycocotools install method * fix_pycocotools * Downgrade Python * back to 3.9 and remove pycocotools dependance * instrucctions for windows * missing comma after merge * lavis only for ubuntu * use lavis package name in install instead of git * adding multimodal searching py and notebook * exclude lavis on windows * skip import on windows * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reactivate lavis * Revert "reactivate lavis" This reverts commit ecdaf9d316e4b08816ba62da5e0482c8ff15b14e. * Change input format for multimodal search * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix clip models * account for new interface in init imports * changed imports bec of lavis/windows * fix if-else, added clip ViT-L-14=336 model * fix code smells * add model change function to summary * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed new model in summary.py * fixed summary windget * moved some function to utils * fixed imort torch in utils * added test_summary.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed opencv version * added first test of multimodal_search.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed test * removed windows in CI and added test in multimodal search * change lavis from dependencies from pip ro git * fixed blip2 model in test_multimodal_search.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed test multimodal search on cpu and gpu machines * added test, fixed dependencies * add -vv to pytest command in CI * added test_multimodal_search tests * fixed tests in test_multimodal_search.py * fixed tests in test_summary * changed CI and fixed test_multimodel search * fixed ci * fixed error in test multimodal search, changed ci * added multimodal search test, added windows CI, added picture in test data * CI debuging * fixing tests in CI * fixing test in CI 2 * fixing CI 3 * fixing CI * added filtering function * Brought back all tests after CI fixing * changed CI one pytest by individual tests * fixed opencv problem * fix path for text, adjust result for new gcv * remove opencv * fixing cv2 error * added opencv-contrib, change objects_cvlib * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing tests in CI * fixing CI testing * cleanup objects * fixing codecov in CI * fixing codecov in CI * run tests together; install opencv last * update requirements for opencv dependencies * moved lavis functions from utils to summary * Remove lavis from utils.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add missing jupyter --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: iulusoy <inga.ulusoy@uni-heidelberg.de>
76 строки
2.3 KiB
Python
76 строки
2.3 KiB
Python
import ipywidgets
|
|
from IPython.display import display
|
|
|
|
import misinformation.faces as faces
|
|
import misinformation.text as text
|
|
import misinformation.objects as objects
|
|
|
|
import misinformation.summary as summary
|
|
|
|
|
|
class JSONContainer:
|
|
"""Expose a Python dictionary as a JSON document in JupyterLab
|
|
rich display rendering.
|
|
"""
|
|
|
|
def __init__(self, data=None):
|
|
if data is None:
|
|
data = {}
|
|
self._data = data
|
|
|
|
def _repr_json_(self):
|
|
return self._data
|
|
|
|
|
|
def explore_analysis(mydict, identify="faces"):
|
|
# dictionary mapping the type of analysis to be explored
|
|
identify_dict = {
|
|
"faces": faces.EmotionDetector,
|
|
"text-on-image": text.TextDetector,
|
|
"objects": objects.ObjectDetector,
|
|
"summary": summary.SummaryDetector,
|
|
}
|
|
# create a list containing the image ids for the widget
|
|
# image_paths = [mydict[key]["filename"] for key in mydict.keys()]
|
|
image_ids = [key for key in mydict.keys()]
|
|
# Create an image selector widget
|
|
image_select = ipywidgets.Select(
|
|
options=image_ids, layout=ipywidgets.Layout(width="20%"), rows=20
|
|
)
|
|
|
|
# Set up the facial recognition output widget
|
|
output = ipywidgets.Output(layout=ipywidgets.Layout(width="30%"))
|
|
|
|
# Set up the image selection and display widget
|
|
image_widget = ipywidgets.Box(
|
|
children=[],
|
|
layout=ipywidgets.Layout(width="50%"),
|
|
)
|
|
|
|
# Register the tab switch logic
|
|
def switch(_):
|
|
# Clear existing output
|
|
image_widget.children = ()
|
|
output.clear_output()
|
|
|
|
# Create the new content
|
|
image_widget.children = (
|
|
ipywidgets.Image.from_file(mydict[image_select.value]["filename"]),
|
|
)
|
|
|
|
# This output widget absorbes print statements that are messing with
|
|
# the widget output and cannot be disabled through the API.
|
|
with faces.NocatchOutput():
|
|
mydict[image_select.value] = identify_dict[identify](
|
|
mydict[image_select.value]
|
|
).analyse_image()
|
|
with output:
|
|
display(JSONContainer(mydict[image_select.value]))
|
|
|
|
# Register the handler and trigger it immediately
|
|
image_select.observe(switch, names=("value",), type="change")
|
|
switch(None)
|
|
|
|
# Show the combined widget
|
|
return ipywidgets.HBox([image_select, image_widget, output])
|