зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
* colors expression by KMean algorithm * object detection by imageai * object detection by cvlib * add encapsulation of object detection * remove encapsulation of objdetect v0 * objects expression to dict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added imageai to requirements * add objects to dictionary * update for AnalysisMethod baseline * add objects dection support explore_analysis display * extend python version of misinf to allow imageai * account for older python * use global functionality for dict to csv convert * update for docker build * docker will build now but ipywidgets still not working * test code * include test data folder in repo * add some sample images * load cvs labels to dict * add test data * retrigger checks * add map to human coding * get orders from dict, missing dep * add module to test accuracy * retrigger checks * retrigger checks * now removing imageai * removed imageai * move labelmanager to analyse * multiple faces in mydict * fix pre-commit issues * map mydict * hide imageai * objects default using cvlib, isolate and disable imageai * correct python version * refactor faces tests * refactor objects tests * sonarcloud issues * refactor utils tests * address code smells * update readme * update notebook without imageai Co-authored-by: Ma Xianghe <825074348@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: iulusoy <inga.ulusoy@uni-heidelberg.de>
148 строки
4.5 KiB
Plaintext
148 строки
4.5 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<span style =\" color : green ;font - weight : bold \">ImageAI for Object Detection</span>\n",
|
||
"http://imageai.org/#features"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet.\n",
|
||
"</p>\n",
|
||
"ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset. The model implementations provided include RetinaNet, YOLOv3 and TinyYOLOv3."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"There are 80 possible objects that you can detect with the\n",
|
||
"ObjectDetection class, and they are as seen below.\n",
|
||
"\n",
|
||
" person, bicycle, car, motorcycle, airplane,\n",
|
||
" bus, train, truck, boat, traffic light, fire hydrant, stop_sign,\n",
|
||
" parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra,\n",
|
||
" giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard,\n",
|
||
" sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket,\n",
|
||
" bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange,\n",
|
||
" broccoli, carrot, hot dog, pizza, donot, cake, chair, couch, potted plant, bed,\n",
|
||
" dining table, toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave,\n",
|
||
" oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair dryer,\n",
|
||
" toothbrush."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<p>requirements:</p>\n",
|
||
"<p>tensorflow==1.15.0</p>\n",
|
||
"<p>numpy==1.19.5</p>\n",
|
||
"<p>scipy==1.4.1</p>\n",
|
||
"<p>keras==2.1.0</p>\n",
|
||
"<p>imageai==2.0.2</p>\n",
|
||
"\n",
|
||
"<p>Or update to newest version, see https://github.com/OlafenwaMoses/ImageAI</p>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Download the RetinaNet model file for object detection\n",
|
||
"\n",
|
||
"https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from imageai.Detection import ObjectDetection\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import skimage.io\n",
|
||
"import os"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"execution_path = os.getcwd()\n",
|
||
"\n",
|
||
"detector = ObjectDetection()\n",
|
||
"detector.setModelTypeAsRetinaNet()\n",
|
||
"detector.setModelPath(os.path.join(execution_path, \"resnet50_coco_best_v2.0.1.h5\"))\n",
|
||
"detector.loadModel()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"detections = detector.detectObjectsFromImage(\n",
|
||
" input_image=os.path.join(execution_path, \"image.jpg\"),\n",
|
||
" output_image_path=os.path.join(execution_path, \"imagenew.jpg\"),\n",
|
||
")\n",
|
||
"\n",
|
||
"for eachObject in detections:\n",
|
||
" print(eachObject[\"name\"], \" : \", eachObject[\"percentage_probability\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"image = skimage.io.imread(\"image.jpg\")\n",
|
||
"imagenew = skimage.io.imread(\"imagenew.jpg\")\n",
|
||
"\n",
|
||
"_, axis = plt.subplots(1, 2)\n",
|
||
"axis[0].imshow(image, cmap=\"gray\")\n",
|
||
"axis[1].imshow(imagenew, cmap=\"gray\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|