зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-30 05:26:05 +02:00 
			
		
		
		
	 fe1e937f18
			
		
	
	
		fe1e937f18
		
			
		
	
	
	
	
		
			
			* Changed README.md * Changed docs notebooks --------- Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
		
			
				
	
	
		
			642 строки
		
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			642 строки
		
	
	
		
			25 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from ammico.utils import AnalysisMethod
 | |
| from torch import cuda, no_grad
 | |
| from PIL import Image
 | |
| from lavis.models import load_model_and_preprocess
 | |
| from typing import Optional
 | |
| 
 | |
| 
 | |
| class SummaryDetector(AnalysisMethod):
 | |
|     allowed_model_types = [
 | |
|         "base",
 | |
|         "large",
 | |
|         "vqa",
 | |
|     ]
 | |
|     allowed_new_model_types = [
 | |
|         "blip2_t5_pretrain_flant5xxl",
 | |
|         "blip2_t5_pretrain_flant5xl",
 | |
|         "blip2_t5_caption_coco_flant5xl",
 | |
|         "blip2_opt_pretrain_opt2.7b",
 | |
|         "blip2_opt_pretrain_opt6.7b",
 | |
|         "blip2_opt_caption_coco_opt2.7b",
 | |
|         "blip2_opt_caption_coco_opt6.7b",
 | |
|     ]
 | |
|     all_allowed_model_types = allowed_model_types + allowed_new_model_types
 | |
|     allowed_analysis_types = ["summary", "questions", "summary_and_questions"]
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         subdict: dict = {},
 | |
|         model_type: str = "base",
 | |
|         analysis_type: str = "summary_and_questions",
 | |
|         list_of_questions: Optional[list[str]] = None,
 | |
|         summary_model=None,
 | |
|         summary_vis_processors=None,
 | |
|         summary_vqa_model=None,
 | |
|         summary_vqa_vis_processors=None,
 | |
|         summary_vqa_txt_processors=None,
 | |
|         summary_vqa_model_new=None,
 | |
|         summary_vqa_vis_processors_new=None,
 | |
|         summary_vqa_txt_processors_new=None,
 | |
|         device_type: Optional[str] = None,
 | |
|     ) -> None:
 | |
|         """
 | |
|         SummaryDetector class for analysing images using the blip_caption model.
 | |
| 
 | |
|         Args:
 | |
|             subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
 | |
| 
 | |
|             model_type (str, optional): Type of model to use. Can be "base" or "large" or "vqa" for blip_caption and VQA. Or can be one of the new models:
 | |
|                 "blip2_t5_pretrain_flant5xxl",
 | |
|                 "blip2_t5_pretrain_flant5xl",
 | |
|                 "blip2_t5_caption_coco_flant5xl",
 | |
|                 "blip2_opt_pretrain_opt2.7b",
 | |
|                 "blip2_opt_pretrain_opt6.7b",
 | |
|                 "blip2_opt_caption_coco_opt2.7b",
 | |
|                 "blip2_opt_caption_coco_opt6.7b". Defaults to "base".
 | |
|             analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
 | |
|             list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
 | |
|             summary_model ([type], optional): blip_caption model. Defaults to None.
 | |
|             summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
 | |
|             summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
 | |
|             summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
 | |
|             summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
 | |
|             summary_vqa_model_new ([type], optional): new_vqa model. Defaults to None.
 | |
|             summary_vqa_vis_processors_new ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
 | |
|             summary_vqa_txt_processors_new ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
 | |
| 
 | |
|         Raises:
 | |
|             ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
 | |
| 
 | |
|         Returns:
 | |
|             None.
 | |
|         """
 | |
| 
 | |
|         super().__init__(subdict)
 | |
|         # check if analysis_type is valid
 | |
|         if analysis_type not in self.allowed_analysis_types:
 | |
|             raise ValueError(
 | |
|                 "analysis_type must be one of {}".format(self.allowed_analysis_types)
 | |
|             )
 | |
|         # check if device_type is valid
 | |
|         if device_type is None:
 | |
|             self.summary_device = "cuda" if cuda.is_available() else "cpu"
 | |
|         elif device_type not in ["cuda", "cpu"]:
 | |
|             raise ValueError("device_type must be one of {}".format(["cuda", "cpu"]))
 | |
|         else:
 | |
|             self.summary_device = device_type
 | |
|         # check if model_type is valid
 | |
|         if model_type not in self.all_allowed_model_types:
 | |
|             raise ValueError(
 | |
|                 "Model type is not allowed - please select one of {}".format(
 | |
|                     self.all_allowed_model_types
 | |
|                 )
 | |
|             )
 | |
|         self.model_type = model_type
 | |
|         self.analysis_type = analysis_type
 | |
|         # check if list_of_questions is valid
 | |
|         if list_of_questions is None and model_type in self.allowed_model_types:
 | |
|             self.list_of_questions = [
 | |
|                 "Are there people in the image?",
 | |
|                 "What is this picture about?",
 | |
|             ]
 | |
|         elif list_of_questions is None and model_type in self.allowed_new_model_types:
 | |
|             self.list_of_questions = [
 | |
|                 "Question: Are there people in the image? Answer:",
 | |
|                 "Question: What is this picture about? Answer:",
 | |
|             ]
 | |
|         elif (not isinstance(list_of_questions, list)) or (
 | |
|             not all(isinstance(i, str) for i in list_of_questions)
 | |
|         ):
 | |
|             raise ValueError(
 | |
|                 "list_of_questions must be a list of string (questions)"
 | |
|             )  # add sequence of questions
 | |
|         else:
 | |
|             self.list_of_questions = list_of_questions
 | |
|         # load models and preprocessors
 | |
|         if (
 | |
|             model_type in self.allowed_model_types
 | |
|             and (summary_model is None)
 | |
|             and (summary_vis_processors is None)
 | |
|             and (analysis_type == "summary" or analysis_type == "summary_and_questions")
 | |
|         ):
 | |
|             self.summary_model, self.summary_vis_processors = self.load_model(
 | |
|                 model_type=model_type
 | |
|             )
 | |
|         else:
 | |
|             self.summary_model = summary_model
 | |
|             self.summary_vis_processors = summary_vis_processors
 | |
|         if (
 | |
|             model_type in self.allowed_model_types
 | |
|             and (summary_vqa_model is None)
 | |
|             and (summary_vqa_vis_processors is None)
 | |
|             and (summary_vqa_txt_processors is None)
 | |
|             and (
 | |
|                 analysis_type == "questions" or analysis_type == "summary_and_questions"
 | |
|             )
 | |
|         ):
 | |
|             (
 | |
|                 self.summary_vqa_model,
 | |
|                 self.summary_vqa_vis_processors,
 | |
|                 self.summary_vqa_txt_processors,
 | |
|             ) = self.load_vqa_model()
 | |
|         else:
 | |
|             self.summary_vqa_model = summary_vqa_model
 | |
|             self.summary_vqa_vis_processors = summary_vqa_vis_processors
 | |
|             self.summary_vqa_txt_processors = summary_vqa_txt_processors
 | |
|         if (
 | |
|             model_type in self.allowed_new_model_types
 | |
|             and (summary_vqa_model_new is None)
 | |
|             and (summary_vqa_vis_processors_new is None)
 | |
|             and (summary_vqa_txt_processors_new is None)
 | |
|         ):
 | |
|             (
 | |
|                 self.summary_vqa_model_new,
 | |
|                 self.summary_vqa_vis_processors_new,
 | |
|                 self.summary_vqa_txt_processors_new,
 | |
|             ) = self.load_new_model(model_type=model_type)
 | |
|         else:
 | |
|             self.summary_vqa_model_new = summary_vqa_model_new
 | |
|             self.summary_vqa_vis_processors_new = summary_vqa_vis_processors_new
 | |
|             self.summary_vqa_txt_processors_new = summary_vqa_txt_processors_new
 | |
| 
 | |
|     def load_model_base(self):
 | |
|         """
 | |
|         Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             summary_model (torch.nn.Module): model.
 | |
|             summary_vis_processors (dict): preprocessors for visual inputs.
 | |
|         """
 | |
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|             name="blip_caption",
 | |
|             model_type="base_coco",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_model_large(self):
 | |
|         """
 | |
|         Load large_coco blip_caption model and preprocessors for visual inputs from lavis.models.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             summary_model (torch.nn.Module): model.
 | |
|             summary_vis_processors (dict): preprocessors for visual inputs.
 | |
|         """
 | |
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|             name="blip_caption",
 | |
|             model_type="large_coco",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_model(self, model_type: str):
 | |
|         """
 | |
|         Load blip_caption model and preprocessors for visual inputs from lavis.models.
 | |
| 
 | |
|         Args:
 | |
|             model_type (str): type of the model.
 | |
| 
 | |
|         Returns:
 | |
|             summary_model (torch.nn.Module): model.
 | |
|             summary_vis_processors (dict): preprocessors for visual inputs.
 | |
|         """
 | |
|         select_model = {
 | |
|             "base": SummaryDetector.load_model_base,
 | |
|             "large": SummaryDetector.load_model_large,
 | |
|         }
 | |
|         summary_model, summary_vis_processors = select_model[model_type](self)
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_vqa_model(self):
 | |
|         """
 | |
|         Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             summary_vqa_model (torch.nn.Module): model.
 | |
|             summary_vqa_vis_processors (dict): preprocessors for visual inputs.
 | |
|             summary_vqa_txt_processors (dict): preprocessors for text inputs.
 | |
| 
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip_vqa",
 | |
|             model_type="vqav2",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def analyse_image(
 | |
|         self,
 | |
|         subdict: dict = None,
 | |
|         analysis_type: Optional[str] = None,
 | |
|         list_of_questions: Optional[list[str]] = None,
 | |
|         consequential_questions: bool = False,
 | |
|     ):
 | |
|         """
 | |
|         Analyse image with blip_caption model.
 | |
| 
 | |
|         Args:
 | |
|             analysis_type (str): type of the analysis.
 | |
|             subdict (dict): dictionary with analising pictures.
 | |
|             list_of_questions (list[str]): list of questions.
 | |
|             consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models.
 | |
| 
 | |
|         Returns:
 | |
|             self.subdict (dict): dictionary with analysis results.
 | |
|         """
 | |
|         if analysis_type is None:
 | |
|             analysis_type = self.analysis_type
 | |
|         if subdict is not None:
 | |
|             self.subdict = subdict
 | |
|         if list_of_questions is not None:
 | |
|             self.list_of_questions = list_of_questions
 | |
| 
 | |
|         if analysis_type == "summary_and_questions":
 | |
|             if (
 | |
|                 self.model_type in self.allowed_model_types
 | |
|                 and self.analysis_type != "summary_and_questions"
 | |
|             ):  # if model_type is not new and required model is absent
 | |
|                 if self.summary_model is None:  # load summary model if it is not loaded
 | |
|                     self.summary_model, self.summary_vis_processors = self.load_model(
 | |
|                         model_type=self.model_type
 | |
|                     )
 | |
|                 elif (
 | |
|                     self.summary_vqa_model is None
 | |
|                 ):  # load vqa model if it is not loaded
 | |
|                     (
 | |
|                         self.summary_vqa_model,
 | |
|                         self.summary_vqa_vis_processors,
 | |
|                         self.summary_vqa_txt_processors,
 | |
|                     ) = self.load_vqa_model()
 | |
|                 self.analysis_type = "summary_and_questions"  # now all models are loaded, so you can perform any analysis
 | |
|             self.analyse_summary(nondeterministic_summaries=True)
 | |
|             self.analyse_questions(self.list_of_questions, consequential_questions)
 | |
|         elif analysis_type == "summary":
 | |
|             if (
 | |
|                 (self.model_type in self.allowed_model_types)
 | |
|                 and (self.analysis_type == "questions")
 | |
|                 and (self.summary_model is None)
 | |
|             ):  # if model_type is not new and required model is absent
 | |
|                 (
 | |
|                     self.summary_model,
 | |
|                     self.summary_vis_processors,
 | |
|                 ) = self.load_model(  # load summary model if it is not loaded
 | |
|                     model_type=self.model_type
 | |
|                 )
 | |
|                 self.analysis_type = "summary_and_questions"  # now all models are loaded, so you can perform any analysis
 | |
|             self.analyse_summary(nondeterministic_summaries=True)
 | |
|         elif analysis_type == "questions":
 | |
|             if (
 | |
|                 (self.model_type in self.allowed_model_types)
 | |
|                 and (self.analysis_type == "summary")
 | |
|                 and (self.summary_vqa_model is None)
 | |
|             ):  # if model_type is not new and required model is absent
 | |
|                 (
 | |
|                     self.summary_vqa_model,  # load vqa model if it is not loaded
 | |
|                     self.summary_vqa_vis_processors,
 | |
|                     self.summary_vqa_txt_processors,
 | |
|                 ) = self.load_vqa_model()
 | |
|                 self.analysis_type = "summary_and_questions"  # now all models are loaded, so you can perform any analysis
 | |
|             self.analyse_questions(self.list_of_questions, consequential_questions)
 | |
|         else:
 | |
|             raise ValueError(
 | |
|                 "analysis_type must be one of {}".format(self.allowed_analysis_types)
 | |
|             )
 | |
|         return self.subdict
 | |
| 
 | |
|     def analyse_summary(self, nondeterministic_summaries: bool = True):
 | |
|         """
 | |
|         Create 1 constant and 3 non deterministic captions for image.
 | |
| 
 | |
|         Args:
 | |
|             nondeterministic_summaries (bool): whether to create 3 non deterministic captions.
 | |
| 
 | |
|         Returns:
 | |
|             self.subdict (dict): dictionary with analysis results.
 | |
|         """
 | |
|         if self.model_type in self.allowed_model_types:
 | |
|             vis_processors = self.summary_vis_processors
 | |
|             model = self.summary_model
 | |
|         elif self.model_type in self.allowed_new_model_types:
 | |
|             vis_processors = self.summary_vqa_vis_processors_new
 | |
|             model = self.summary_vqa_model_new
 | |
|         else:
 | |
|             raise ValueError(
 | |
|                 "Model type is not allowed - please select one of {}".format(
 | |
|                     self.all_allowed_model_types
 | |
|                 )
 | |
|             )
 | |
|         path = self.subdict["filename"]
 | |
|         raw_image = Image.open(path).convert("RGB")
 | |
|         image = vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
 | |
|         with no_grad():
 | |
|             self.subdict["const_image_summary"] = model.generate({"image": image})[0]
 | |
|             if nondeterministic_summaries:
 | |
|                 self.subdict["3_non-deterministic_summary"] = model.generate(
 | |
|                     {"image": image}, use_nucleus_sampling=True, num_captions=3
 | |
|                 )
 | |
|         return self.subdict
 | |
| 
 | |
|     def analyse_questions(
 | |
|         self, list_of_questions: list[str], consequential_questions: bool = False
 | |
|     ) -> dict:
 | |
|         """
 | |
|         Generate answers to free-form questions about image written in natural language.
 | |
| 
 | |
|         Args:
 | |
|             list_of_questions (list[str]): list of questions.
 | |
|             consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models.
 | |
| 
 | |
|         Returns:
 | |
|             self.subdict (dict): dictionary with answers to questions.
 | |
|         """
 | |
|         model, vis_processors, txt_processors, model_old = self.check_model()
 | |
|         if len(list_of_questions) > 0:
 | |
|             path = self.subdict["filename"]
 | |
|             raw_image = Image.open(path).convert("RGB")
 | |
|             image = (
 | |
|                 vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
 | |
|             )
 | |
|             question_batch = []
 | |
|             list_of_questions_processed = []
 | |
| 
 | |
|             if model_old:
 | |
|                 for quest in list_of_questions:
 | |
|                     list_of_questions_processed.append(txt_processors["eval"](quest))
 | |
|             else:
 | |
|                 for quest in list_of_questions:
 | |
|                     list_of_questions_processed.append((str)(quest))
 | |
| 
 | |
|             for quest in list_of_questions_processed:
 | |
|                 question_batch.append(quest)
 | |
|             batch_size = len(list_of_questions)
 | |
|             image_batch = image.repeat(batch_size, 1, 1, 1)
 | |
| 
 | |
|             if not consequential_questions:
 | |
|                 with no_grad():
 | |
|                     if model_old:
 | |
|                         answers_batch = model.predict_answers(
 | |
|                             samples={
 | |
|                                 "image": image_batch,
 | |
|                                 "text_input": question_batch,
 | |
|                             },
 | |
|                             inference_method="generate",
 | |
|                         )
 | |
|                     else:
 | |
|                         answers_batch = model.generate(
 | |
|                             {"image": image_batch, "prompt": question_batch}
 | |
|                         )
 | |
| 
 | |
|                 for q, a in zip(list_of_questions, answers_batch):
 | |
|                     self.subdict[q] = a
 | |
| 
 | |
|             if consequential_questions and not model_old:
 | |
|                 query_with_context = ""
 | |
|                 for quest in question_batch:
 | |
|                     query_with_context = query_with_context + quest
 | |
|                     with no_grad():
 | |
|                         answer = model.generate(
 | |
|                             {"image": image, "prompt": query_with_context}
 | |
|                         )
 | |
|                     self.subdict[query_with_context] = answer[0]
 | |
|                     query_with_context = query_with_context + " " + answer[0] + ". "
 | |
|             elif consequential_questions and model_old:
 | |
|                 raise ValueError(
 | |
|                     "Consequential questions are not allowed for old models"
 | |
|                 )
 | |
|         else:
 | |
|             print("Please, enter list of questions")
 | |
|         return self.subdict
 | |
| 
 | |
|     def check_model(self):
 | |
|         """
 | |
|         Check model type and return appropriate model and preprocessors.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (nn.Module): model.
 | |
|             vis_processors (dict): visual preprocessor.
 | |
|             txt_processors (dict): text preprocessor.
 | |
|             model_old (bool): whether model is old or new.
 | |
|         """
 | |
|         if self.model_type in self.allowed_model_types:
 | |
|             vis_processors = self.summary_vqa_vis_processors
 | |
|             model = self.summary_vqa_model
 | |
|             txt_processors = self.summary_vqa_txt_processors
 | |
|             model_old = True
 | |
|         elif self.model_type in self.allowed_new_model_types:
 | |
|             vis_processors = self.summary_vqa_vis_processors_new
 | |
|             model = self.summary_vqa_model_new
 | |
|             txt_processors = self.summary_vqa_txt_processors_new
 | |
|             model_old = False
 | |
|         else:
 | |
|             raise ValueError(
 | |
|                 "Model type is not allowed - please select one of {}".format(
 | |
|                     self.all_allowed_model_types
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         return model, vis_processors, txt_processors, model_old
 | |
| 
 | |
|     def load_new_model(self, model_type: str):
 | |
|         """
 | |
|         Load new BLIP2 models.
 | |
| 
 | |
|         Args:
 | |
|             model_type (str): type of the model.
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         select_model = {
 | |
|             "blip2_t5_pretrain_flant5xxl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl,
 | |
|             "blip2_t5_pretrain_flant5xl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xl,
 | |
|             "blip2_t5_caption_coco_flant5xl": SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl,
 | |
|             "blip2_opt_pretrain_opt2.7b": SummaryDetector.load_model_blip2_opt_pretrain_opt27b,
 | |
|             "blip2_opt_pretrain_opt6.7b": SummaryDetector.load_model_base_blip2_opt_pretrain_opt67b,
 | |
|             "blip2_opt_caption_coco_opt2.7b": SummaryDetector.load_model_blip2_opt_caption_coco_opt27b,
 | |
|             "blip2_opt_caption_coco_opt6.7b": SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b,
 | |
|         }
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = select_model[model_type](self)
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_blip2_t5_pretrain_flant5xxl(self):
 | |
|         """
 | |
|         Load BLIP2 model with FLAN-T5 XXL architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_t5",
 | |
|             model_type="pretrain_flant5xxl",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_blip2_t5_pretrain_flant5xl(self):
 | |
|         """
 | |
|         Load BLIP2 model with FLAN-T5 XL architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_t5",
 | |
|             model_type="pretrain_flant5xl",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_blip2_t5_caption_coco_flant5xl(self):
 | |
|         """
 | |
|         Load BLIP2 model with caption_coco_flant5xl architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_t5",
 | |
|             model_type="caption_coco_flant5xl",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_blip2_opt_pretrain_opt27b(self):
 | |
|         """
 | |
|         Load BLIP2 model with pretrain_opt2 architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_opt",
 | |
|             model_type="pretrain_opt2.7b",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_base_blip2_opt_pretrain_opt67b(self):
 | |
|         """
 | |
|         Load BLIP2 model with pretrain_opt6.7b architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_opt",
 | |
|             model_type="pretrain_opt6.7b",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_blip2_opt_caption_coco_opt27b(self):
 | |
|         """
 | |
|         Load BLIP2 model with caption_coco_opt2.7b architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_opt",
 | |
|             model_type="caption_coco_opt2.7b",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 | |
| 
 | |
|     def load_model_base_blip2_opt_caption_coco_opt67b(self):
 | |
|         """
 | |
|         Load BLIP2 model with caption_coco_opt6.7b architecture.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         Returns:
 | |
|             model (torch.nn.Module): model.
 | |
|             vis_processors (dict): preprocessors for visual inputs.
 | |
|             txt_processors (dict): preprocessors for text inputs.
 | |
|         """
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip2_opt",
 | |
|             model_type="caption_coco_opt6.7b",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
 |