AMMICO/build/doctrees/nbsphinx/notebooks/Example summary.ipynb

1948 строки
50 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image summary and visual question answering"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:29:20.531731Z",
"iopub.status.busy": "2023-09-18T08:29:20.531482Z",
"iopub.status.idle": "2023-09-18T08:29:20.540219Z",
"shell.execute_reply": "2023-09-18T08:29:20.539545Z"
}
},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:29:20.543387Z",
"iopub.status.busy": "2023-09-18T08:29:20.542804Z",
"iopub.status.idle": "2023-09-18T08:29:31.833509Z",
"shell.execute_reply": "2023-09-18T08:29:31.832759Z"
},
"tags": []
},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.summary as sm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:29:31.838125Z",
"iopub.status.busy": "2023-09-18T08:29:31.837032Z",
"iopub.status.idle": "2023-09-18T08:29:31.842380Z",
"shell.execute_reply": "2023-09-18T08:29:31.841781Z"
},
"tags": []
},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"images = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:29:31.845655Z",
"iopub.status.busy": "2023-09-18T08:29:31.845021Z",
"iopub.status.idle": "2023-09-18T08:29:31.848447Z",
"shell.execute_reply": "2023-09-18T08:29:31.847852Z"
},
"tags": []
},
"outputs": [],
"source": [
"mydict = mutils.initialize_dict(images)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create captions for images and directly write to csv"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n",
"\n",
"The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:29:31.851698Z",
"iopub.status.busy": "2023-09-18T08:29:31.851078Z",
"iopub.status.idle": "2023-09-18T08:30:37.116733Z",
"shell.execute_reply": "2023-09-18T08:30:37.110526Z"
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/2.50G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 7.34M/2.50G [00:00<00:34, 76.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 16.0M/2.50G [00:00<00:32, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 32.0M/2.50G [00:00<00:24, 110MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 48.0M/2.50G [00:00<00:20, 131MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 60.5M/2.50G [00:00<00:20, 130MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 72.9M/2.50G [00:00<00:20, 126MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 87.7M/2.50G [00:00<00:19, 135MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 109M/2.50G [00:00<00:15, 161MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 128M/2.50G [00:00<00:14, 174MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 148M/2.50G [00:01<00:13, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 176M/2.50G [00:01<00:11, 214MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 205M/2.50G [00:01<00:10, 240MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 231M/2.50G [00:01<00:09, 251MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|▉ | 255M/2.50G [00:01<00:09, 248MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█ | 282M/2.50G [00:01<00:09, 257MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 307M/2.50G [00:01<00:09, 260MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 336M/2.50G [00:01<00:08, 264MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 366M/2.50G [00:01<00:08, 277MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 392M/2.50G [00:01<00:08, 278MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▋ | 420M/2.50G [00:02<00:07, 282MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 447M/2.50G [00:02<00:07, 280MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 474M/2.50G [00:02<00:07, 278MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|█▉ | 500M/2.50G [00:02<00:07, 275MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 529M/2.50G [00:02<00:07, 281MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 555M/2.50G [00:02<00:07, 280MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 587M/2.50G [00:02<00:07, 290MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 617M/2.50G [00:02<00:06, 297MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▌ | 645M/2.50G [00:02<00:06, 293MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▋ | 673M/2.50G [00:02<00:07, 281MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 700M/2.50G [00:03<00:07, 275MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▊ | 733M/2.50G [00:03<00:06, 294MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|██▉ | 761M/2.50G [00:03<00:06, 288MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 788M/2.50G [00:03<00:16, 116MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 816M/2.50G [00:04<00:12, 141MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 849M/2.50G [00:04<00:10, 175MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 878M/2.50G [00:04<00:08, 200MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▌ | 904M/2.50G [00:04<00:08, 217MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▋ | 931M/2.50G [00:04<00:07, 228MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 959M/2.50G [00:04<00:06, 244MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 985M/2.50G [00:04<00:06, 239MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▉ | 0.99G/2.50G [00:04<00:06, 238MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|████ | 1.01G/2.50G [00:04<00:06, 236MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████▏ | 1.03G/2.50G [00:04<00:06, 241MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.06G/2.50G [00:05<00:06, 256MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 1.09G/2.50G [00:05<00:06, 241MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 1.11G/2.50G [00:05<00:06, 234MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 1.13G/2.50G [00:05<00:09, 157MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 1.15G/2.50G [00:05<00:09, 158MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.17G/2.50G [00:05<00:08, 171MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.19G/2.50G [00:06<00:10, 133MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 1.20G/2.50G [00:06<00:12, 113MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 1.22G/2.50G [00:06<00:10, 134MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|████▉ | 1.24G/2.50G [00:06<00:11, 120MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|█████ | 1.25G/2.50G [00:06<00:13, 102MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|█████ | 1.26G/2.50G [00:06<00:13, 97.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 1.28G/2.50G [00:07<00:12, 104MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 1.31G/2.50G [00:07<00:09, 142MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 1.33G/2.50G [00:07<00:07, 169MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▍ | 1.35G/2.50G [00:07<00:08, 140MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▍ | 1.37G/2.50G [00:07<00:07, 158MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 1.39G/2.50G [00:07<00:07, 151MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 1.40G/2.50G [00:07<00:07, 152MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 1.42G/2.50G [00:07<00:08, 138MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.44G/2.50G [00:08<00:06, 168MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.46G/2.50G [00:08<00:06, 166MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 1.48G/2.50G [00:08<00:06, 182MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|█████▉ | 1.50G/2.50G [00:08<00:05, 192MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 1.52G/2.50G [00:08<00:05, 198MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 1.54G/2.50G [00:08<00:04, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 1.57G/2.50G [00:08<00:04, 222MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▎ | 1.59G/2.50G [00:08<00:04, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 1.62G/2.50G [00:08<00:03, 240MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▌ | 1.64G/2.50G [00:08<00:03, 242MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▋ | 1.66G/2.50G [00:09<00:03, 248MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 1.69G/2.50G [00:09<00:03, 230MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 1.71G/2.50G [00:09<00:03, 238MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 1.74G/2.50G [00:09<00:03, 243MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|███████ | 1.76G/2.50G [00:09<00:03, 257MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████▏ | 1.79G/2.50G [00:09<00:04, 179MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.81G/2.50G [00:09<00:04, 184MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 1.83G/2.50G [00:10<00:04, 154MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▎ | 1.85G/2.50G [00:10<00:04, 148MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▍ | 1.87G/2.50G [00:10<00:04, 168MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▌ | 1.88G/2.50G [00:10<00:06, 107MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.92G/2.50G [00:10<00:04, 146MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.94G/2.50G [00:10<00:03, 171MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.97G/2.50G [00:11<00:03, 173MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.99G/2.50G [00:11<00:03, 159MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|████████ | 2.01G/2.50G [00:11<00:04, 122MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 2.03G/2.50G [00:11<00:03, 146MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 2.06G/2.50G [00:11<00:02, 173MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.08G/2.50G [00:11<00:03, 127MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 2.10G/2.50G [00:12<00:02, 150MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▍ | 2.13G/2.50G [00:12<00:02, 178MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 2.15G/2.50G [00:12<00:01, 203MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 2.18G/2.50G [00:12<00:01, 216MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.20G/2.50G [00:12<00:01, 228MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▉ | 2.22G/2.50G [00:12<00:02, 144MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 2.25G/2.50G [00:12<00:01, 166MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.27G/2.50G [00:12<00:01, 184MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.29G/2.50G [00:13<00:01, 198MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.32G/2.50G [00:13<00:00, 213MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▎| 2.35G/2.50G [00:13<00:00, 233MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▍| 2.37G/2.50G [00:13<00:00, 240MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 2.39G/2.50G [00:13<00:00, 243MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 2.42G/2.50G [00:13<00:00, 247MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.45G/2.50G [00:13<00:00, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▊| 2.47G/2.50G [00:13<00:00, 258MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|█████████▉| 2.49G/2.50G [00:13<00:00, 255MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 2.50G/2.50G [00:13<00:00, 193MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/1.35G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 8.01M/1.35G [00:00<00:23, 61.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 24.0M/1.35G [00:00<00:13, 103MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 36.4M/1.35G [00:00<00:12, 114MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 48.0M/1.35G [00:00<00:13, 104MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 62.5M/1.35G [00:00<00:11, 120MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 80.0M/1.35G [00:00<00:10, 126MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 102M/1.35G [00:00<00:08, 157MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 125M/1.35G [00:00<00:07, 181MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█▏ | 156M/1.35G [00:01<00:05, 223MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 185M/1.35G [00:01<00:05, 248MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 212M/1.35G [00:01<00:04, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 238M/1.35G [00:01<00:05, 207MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 259M/1.35G [00:01<00:06, 185MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 292M/1.35G [00:01<00:05, 222MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▎ | 325M/1.35G [00:01<00:04, 255MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▌ | 358M/1.35G [00:01<00:03, 279MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 390M/1.35G [00:01<00:03, 296MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|███ | 420M/1.35G [00:02<00:03, 283MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 448M/1.35G [00:02<00:03, 279MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 475M/1.35G [00:02<00:03, 277MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▋ | 502M/1.35G [00:02<00:03, 269MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 528M/1.35G [00:02<00:03, 268MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████ | 561M/1.35G [00:02<00:02, 289MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 593M/1.35G [00:02<00:02, 302MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 622M/1.35G [00:03<00:06, 129MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 648M/1.35G [00:03<00:05, 151MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 674M/1.35G [00:03<00:04, 173MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 699M/1.35G [00:03<00:03, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 731M/1.35G [00:03<00:03, 224MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 759M/1.35G [00:03<00:02, 242MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 787M/1.35G [00:03<00:02, 247MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 813M/1.35G [00:03<00:02, 253MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 839M/1.35G [00:04<00:02, 259MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 866M/1.35G [00:04<00:02, 262MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 892M/1.35G [00:04<00:01, 266MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 918M/1.35G [00:04<00:01, 267MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 950M/1.35G [00:04<00:01, 286MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 977M/1.35G [00:04<00:01, 280MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 0.98G/1.35G [00:04<00:01, 277MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▍ | 1.01G/1.35G [00:04<00:01, 276MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.03G/1.35G [00:04<00:01, 273MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▊ | 1.06G/1.35G [00:05<00:01, 272MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|████████ | 1.08G/1.35G [00:05<00:01, 273MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 1.12G/1.35G [00:05<00:00, 297MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▌ | 1.15G/1.35G [00:05<00:00, 313MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 1.18G/1.35G [00:05<00:00, 295MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 1.21G/1.35G [00:05<00:00, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 1.24G/1.35G [00:05<00:00, 252MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 1.26G/1.35G [00:05<00:00, 265MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 1.29G/1.35G [00:05<00:00, 270MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 1.32G/1.35G [00:06<00:00, 276MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|█████████▉| 1.34G/1.35G [00:06<00:00, 281MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 1.35G/1.35G [00:06<00:00, 235MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"obj = sm.SummaryDetector(mydict)\n",
"summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n",
"# summary_model, summary_vis_processors = mutils.load_model(\"large\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:30:37.162107Z",
"iopub.status.busy": "2023-09-18T08:30:37.160673Z",
"iopub.status.idle": "2023-09-18T08:31:16.842127Z",
"shell.execute_reply": "2023-09-18T08:31:16.841216Z"
},
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "analyse_image() got an unexpected keyword argument 'summary_model'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_image\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msummary_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msummary_vis_processors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_vis_processors\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mTypeError\u001b[0m: analyse_image() got an unexpected keyword argument 'summary_model'"
]
}
],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n",
" summary_model=summary_model, summary_vis_processors=summary_vis_processors\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"Convert the dictionary of dictionarys into a dictionary with lists:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:16.864546Z",
"iopub.status.busy": "2023-09-18T08:31:16.863693Z",
"iopub.status.idle": "2023-09-18T08:31:16.888927Z",
"shell.execute_reply": "2023-09-18T08:31:16.888230Z"
},
"tags": []
},
"outputs": [],
"source": [
"outdict = mutils.append_data_to_dict(mydict)\n",
"df = mutils.dump_df(outdict)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:16.894187Z",
"iopub.status.busy": "2023-09-18T08:31:16.893566Z",
"iopub.status.idle": "2023-09-18T08:31:16.930644Z",
"shell.execute_reply": "2023-09-18T08:31:16.929616Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>102141_2_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>102730_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>106349S_por</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename\n",
"0 102141_2_eng\n",
"1 102730_eng\n",
"2 106349S_por"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(10)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:16.940417Z",
"iopub.status.busy": "2023-09-18T08:31:16.939907Z",
"iopub.status.idle": "2023-09-18T08:31:16.952335Z",
"shell.execute_reply": "2023-09-18T08:31:16.951693Z"
}
},
"outputs": [],
"source": [
"df.to_csv(\"data_out.csv\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manually inspect the summaries\n",
"\n",
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n",
"\n",
"`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n",
"\n",
"`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:16.958049Z",
"iopub.status.busy": "2023-09-18T08:31:16.957567Z",
"iopub.status.idle": "2023-09-18T08:31:17.000323Z",
"shell.execute_reply": "2023-09-18T08:31:16.999256Z"
},
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "__init__() got an unexpected keyword argument 'identify'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
]
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate answers to free-form questions about images written in natural language. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Set the list of questions as a list of strings:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:17.006776Z",
"iopub.status.busy": "2023-09-18T08:31:17.006247Z",
"iopub.status.idle": "2023-09-18T08:31:17.009698Z",
"shell.execute_reply": "2023-09-18T08:31:17.009118Z"
}
},
"outputs": [],
"source": [
"list_of_questions = [\n",
" \"How many persons on the picture?\",\n",
" \"Are there any politicians in the picture?\",\n",
" \"Does the picture show something from medicine?\",\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Explore the analysis using the interface:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:17.013810Z",
"iopub.status.busy": "2023-09-18T08:31:17.013415Z",
"iopub.status.idle": "2023-09-18T08:31:17.054169Z",
"shell.execute_reply": "2023-09-18T08:31:17.053537Z"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "__init__() got an unexpected keyword argument 'identify'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
]
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Or directly analyze for further processing\n",
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:17.059681Z",
"iopub.status.busy": "2023-09-18T08:31:17.059265Z",
"iopub.status.idle": "2023-09-18T08:31:50.258235Z",
"shell.execute_reply": "2023-09-18T08:31:50.256395Z"
}
},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: '102141_2_eng'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[13], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_questions\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlist_of_questions\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/summary.py:244\u001b[0m, in \u001b[0;36mSummaryDetector.analyse_questions\u001b[0;34m(self, list_of_questions)\u001b[0m\n\u001b[1;32m 242\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(list_of_questions) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 243\u001b[0m path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msubdict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfilename\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m--> 244\u001b[0m raw_image \u001b[38;5;241m=\u001b[39m \u001b[43mImage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mconvert(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRGB\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 245\u001b[0m image \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 246\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_vqa_vis_processors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124meval\u001b[39m\u001b[38;5;124m\"\u001b[39m](raw_image)\n\u001b[1;32m 247\u001b[0m \u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m 248\u001b[0m \u001b[38;5;241m.\u001b[39mto(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msummary_device)\n\u001b[1;32m 249\u001b[0m )\n\u001b[1;32m 250\u001b[0m question_batch \u001b[38;5;241m=\u001b[39m []\n",
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/PIL/Image.py:3236\u001b[0m, in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m 3233\u001b[0m filename \u001b[38;5;241m=\u001b[39m fp\n\u001b[1;32m 3235\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filename:\n\u001b[0;32m-> 3236\u001b[0m fp \u001b[38;5;241m=\u001b[39m \u001b[43mbuiltins\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3237\u001b[0m exclusive_fp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 3239\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '102141_2_eng'"
]
}
],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert to dataframe and write csv\n",
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:50.280410Z",
"iopub.status.busy": "2023-09-18T08:31:50.278468Z",
"iopub.status.idle": "2023-09-18T08:31:50.361298Z",
"shell.execute_reply": "2023-09-18T08:31:50.360529Z"
}
},
"outputs": [],
"source": [
"outdict2 = mutils.append_data_to_dict(mydict)\n",
"df2 = mutils.dump_df(outdict2)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:50.367916Z",
"iopub.status.busy": "2023-09-18T08:31:50.367250Z",
"iopub.status.idle": "2023-09-18T08:31:50.453218Z",
"shell.execute_reply": "2023-09-18T08:31:50.452346Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>102141_2_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>102730_eng</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>106349S_por</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename\n",
"0 102141_2_eng\n",
"1 102730_eng\n",
"2 106349S_por"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2023-09-18T08:31:50.457676Z",
"iopub.status.busy": "2023-09-18T08:31:50.457416Z",
"iopub.status.idle": "2023-09-18T08:31:50.475298Z",
"shell.execute_reply": "2023-09-18T08:31:50.474583Z"
}
},
"outputs": [],
"source": [
"df2.to_csv(\"data_out2.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
},
"vscode": {
"interpreter": {
"hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}