зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-31 22:16:05 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2087 строки
		
	
	
		
			49 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			2087 строки
		
	
	
		
			49 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Image summary and visual question answering"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n",
 | |
|     "\n",
 | |
|     "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
 | |
|     "\n",
 | |
|     "After that, we can import `ammico` and read in the files given a folder path."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:31:10.925667Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:31:10.925388Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:31:10.934992Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:31:10.934373Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# if running on google colab\n",
 | |
|     "# flake8-noqa-cell\n",
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "if \"google.colab\" in str(get_ipython()):\n",
 | |
|     "    # update python version\n",
 | |
|     "    # install setuptools\n",
 | |
|     "    # %pip install setuptools==61 -qqq\n",
 | |
|     "    # install ammico\n",
 | |
|     "    %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
 | |
|     "    # mount google drive for data and API key\n",
 | |
|     "    from google.colab import drive\n",
 | |
|     "\n",
 | |
|     "    drive.mount(\"/content/drive\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:31:10.938088Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:31:10.937658Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:31:22.127705Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:31:22.126938Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import ammico\n",
 | |
|     "from ammico import utils as mutils\n",
 | |
|     "from ammico import display as mdisplay\n",
 | |
|     "import ammico.summary as sm"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:31:22.131652Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:31:22.130738Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:31:22.135322Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:31:22.134614Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Here you need to provide the path to your google drive folder\n",
 | |
|     "# or local folder containing the images\n",
 | |
|     "images = mutils.find_files(\n",
 | |
|     "    path=\"data/\",\n",
 | |
|     "    limit=10,\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:31:22.138429Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:31:22.137975Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:31:22.141416Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:31:22.140706Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "mydict = mutils.initialize_dict(images)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Create captions for images and directly write to csv"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n",
 | |
|     "\n",
 | |
|     "The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:31:22.145166Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:31:22.144723Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:31:47.380101Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:31:47.379260Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  0%|          | 0.00/2.50G [00:00<?, ?B/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  0%|          | 7.52M/2.50G [00:00<00:34, 78.8MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 15.0M/2.50G [00:00<00:34, 78.2MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 22.5M/2.50G [00:00<00:34, 77.3MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 32.0M/2.50G [00:00<00:34, 77.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  2%|▏         | 46.8M/2.50G [00:00<00:25, 104MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  2%|▏         | 56.8M/2.50G [00:00<00:25, 103MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  3%|▎         | 72.0M/2.50G [00:00<00:22, 118MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  3%|▎         | 85.3M/2.50G [00:00<00:20, 124MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  4%|▍         | 97.2M/2.50G [00:00<00:22, 116MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  4%|▍         | 108M/2.50G [00:01<00:25, 101MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  5%|▍         | 125M/2.50G [00:01<00:21, 119MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  6%|▌         | 144M/2.50G [00:01<00:18, 139MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  6%|▋         | 162M/2.50G [00:01<00:16, 152MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  7%|▋         | 179M/2.50G [00:01<00:15, 161MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  8%|▊         | 200M/2.50G [00:01<00:14, 168MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  8%|▊         | 218M/2.50G [00:01<00:14, 173MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  9%|▉         | 242M/2.50G [00:01<00:12, 198MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 10%|█         | 261M/2.50G [00:01<00:12, 191MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 11%|█▏        | 289M/2.50G [00:02<00:10, 218MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 12%|█▏        | 310M/2.50G [00:02<00:11, 210MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 13%|█▎        | 335M/2.50G [00:02<00:10, 227MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 14%|█▍        | 357M/2.50G [00:02<00:11, 207MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 15%|█▍        | 383M/2.50G [00:02<00:10, 225MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 16%|█▌        | 407M/2.50G [00:02<00:09, 232MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 17%|█▋        | 432M/2.50G [00:02<00:09, 240MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 18%|█▊        | 459M/2.50G [00:02<00:08, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 19%|█▉        | 484M/2.50G [00:02<00:08, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 20%|█▉        | 509M/2.50G [00:03<00:08, 256MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 21%|██        | 534M/2.50G [00:03<00:08, 258MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 22%|██▏       | 560M/2.50G [00:03<00:07, 265MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 23%|██▎       | 586M/2.50G [00:03<00:07, 267MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 24%|██▍       | 612M/2.50G [00:03<00:07, 268MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 25%|██▍       | 638M/2.50G [00:03<00:07, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 26%|██▌       | 663M/2.50G [00:03<00:07, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 27%|██▋       | 688M/2.50G [00:03<00:10, 180MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 28%|██▊       | 713M/2.50G [00:03<00:09, 199MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 29%|██▉       | 741M/2.50G [00:04<00:08, 221MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 30%|██▉       | 766M/2.50G [00:04<00:08, 233MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 31%|███       | 794M/2.50G [00:04<00:07, 250MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 32%|███▏      | 821M/2.50G [00:04<00:07, 256MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 33%|███▎      | 846M/2.50G [00:04<00:06, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 34%|███▍      | 873M/2.50G [00:04<00:06, 267MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 35%|███▌      | 901M/2.50G [00:04<00:06, 272MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 36%|███▌      | 929M/2.50G [00:04<00:06, 280MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 37%|███▋      | 956M/2.50G [00:04<00:06, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 38%|███▊      | 981M/2.50G [00:05<00:06, 256MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 39%|███▉      | 0.98G/2.50G [00:05<00:07, 223MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 40%|████      | 1.00G/2.50G [00:05<00:15, 102MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 41%|████      | 1.02G/2.50G [00:05<00:14, 111MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 41%|████▏     | 1.04G/2.50G [00:05<00:12, 125MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 42%|████▏     | 1.06G/2.50G [00:06<00:10, 152MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 43%|████▎     | 1.08G/2.50G [00:06<00:09, 157MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 44%|████▍     | 1.11G/2.50G [00:06<00:08, 183MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 45%|████▌     | 1.13G/2.50G [00:06<00:07, 206MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 46%|████▋     | 1.16G/2.50G [00:06<00:06, 225MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 47%|████▋     | 1.18G/2.50G [00:06<00:06, 236MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 48%|████▊     | 1.21G/2.50G [00:06<00:05, 233MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 49%|████▉     | 1.23G/2.50G [00:06<00:05, 245MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 50%|█████     | 1.26G/2.50G [00:06<00:05, 257MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 51%|█████▏    | 1.28G/2.50G [00:06<00:05, 247MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 52%|█████▏    | 1.31G/2.50G [00:07<00:05, 249MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 53%|█████▎    | 1.33G/2.50G [00:07<00:04, 252MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 54%|█████▍    | 1.36G/2.50G [00:07<00:04, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 55%|█████▌    | 1.38G/2.50G [00:07<00:05, 227MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 56%|█████▌    | 1.40G/2.50G [00:07<00:05, 225MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 57%|█████▋    | 1.42G/2.50G [00:07<00:05, 216MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 58%|█████▊    | 1.44G/2.50G [00:07<00:05, 194MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 59%|█████▊    | 1.47G/2.50G [00:07<00:05, 214MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 60%|█████▉    | 1.50G/2.50G [00:07<00:04, 232MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 61%|██████    | 1.52G/2.50G [00:08<00:05, 206MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 62%|██████▏   | 1.54G/2.50G [00:08<00:04, 218MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 63%|██████▎   | 1.57G/2.50G [00:08<00:04, 231MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 64%|██████▎   | 1.59G/2.50G [00:08<00:04, 238MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 64%|██████▍   | 1.61G/2.50G [00:08<00:04, 226MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 65%|██████▌   | 1.64G/2.50G [00:08<00:03, 235MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 66%|██████▋   | 1.66G/2.50G [00:08<00:03, 227MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 67%|██████▋   | 1.68G/2.50G [00:08<00:03, 241MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 68%|██████▊   | 1.71G/2.50G [00:08<00:03, 230MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 69%|██████▉   | 1.73G/2.50G [00:09<00:03, 242MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 70%|███████   | 1.76G/2.50G [00:09<00:03, 214MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 71%|███████   | 1.78G/2.50G [00:09<00:03, 217MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 72%|███████▏  | 1.80G/2.50G [00:09<00:03, 229MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 73%|███████▎  | 1.82G/2.50G [00:09<00:03, 218MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 74%|███████▎  | 1.84G/2.50G [00:09<00:03, 207MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 75%|███████▍  | 1.87G/2.50G [00:09<00:03, 217MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 75%|███████▌  | 1.89G/2.50G [00:09<00:02, 221MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 76%|███████▋  | 1.91G/2.50G [00:09<00:02, 235MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 77%|███████▋  | 1.94G/2.50G [00:10<00:02, 250MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 78%|███████▊  | 1.96G/2.50G [00:10<00:06, 89.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 80%|███████▉  | 1.99G/2.50G [00:10<00:04, 116MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 81%|████████  | 2.02G/2.50G [00:11<00:03, 145MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 82%|████████▏ | 2.05G/2.50G [00:11<00:02, 171MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 83%|████████▎ | 2.07G/2.50G [00:11<00:02, 193MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 84%|████████▎ | 2.10G/2.50G [00:11<00:02, 188MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 85%|████████▍ | 2.12G/2.50G [00:11<00:02, 174MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 86%|████████▌ | 2.15G/2.50G [00:11<00:01, 203MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 87%|████████▋ | 2.17G/2.50G [00:11<00:01, 223MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 88%|████████▊ | 2.20G/2.50G [00:11<00:01, 235MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 89%|████████▉ | 2.22G/2.50G [00:11<00:01, 228MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 90%|████████▉ | 2.24G/2.50G [00:12<00:01, 222MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 91%|█████████ | 2.27G/2.50G [00:12<00:01, 239MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 92%|█████████▏| 2.29G/2.50G [00:12<00:00, 239MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 93%|█████████▎| 2.32G/2.50G [00:12<00:00, 248MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 94%|█████████▎| 2.34G/2.50G [00:12<00:00, 241MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 95%|█████████▍| 2.37G/2.50G [00:12<00:00, 259MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 96%|█████████▌| 2.40G/2.50G [00:12<00:00, 244MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 97%|█████████▋| 2.42G/2.50G [00:12<00:00, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 98%|█████████▊| 2.45G/2.50G [00:12<00:00, 217MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 99%|█████████▊| 2.47G/2.50G [00:13<00:00, 96.6MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 99%|█████████▉| 2.48G/2.50G [00:15<00:00, 33.8MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "100%|█████████▉| 2.49G/2.50G [00:15<00:00, 38.7MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "100%|██████████| 2.50G/2.50G [00:15<00:00, 175MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "obj = sm.SummaryDetector(mydict)\n",
 | |
|     "summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n",
 | |
|     "# summary_model, summary_vis_processors = mutils.load_model(\"large\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:31:47.384894Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:31:47.384380Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.017456Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.016433Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "for key in mydict:\n",
 | |
|     "    mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n",
 | |
|     "        summary_model=summary_model, summary_vis_processors=summary_vis_processors\n",
 | |
|     "    )"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "source": [
 | |
|     "Convert the dictionary of dictionarys into a dictionary with lists:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.021380Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.020788Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.026055Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.025442Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "outdict = mutils.append_data_to_dict(mydict)\n",
 | |
|     "df = mutils.dump_df(outdict)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Check the dataframe:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 8,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.029340Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.028992Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.042808Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.041843Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/html": [
 | |
|        "<div>\n",
 | |
|        "<style scoped>\n",
 | |
|        "    .dataframe tbody tr th:only-of-type {\n",
 | |
|        "        vertical-align: middle;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe tbody tr th {\n",
 | |
|        "        vertical-align: top;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe thead th {\n",
 | |
|        "        text-align: right;\n",
 | |
|        "    }\n",
 | |
|        "</style>\n",
 | |
|        "<table border=\"1\" class=\"dataframe\">\n",
 | |
|        "  <thead>\n",
 | |
|        "    <tr style=\"text-align: right;\">\n",
 | |
|        "      <th></th>\n",
 | |
|        "      <th>filename</th>\n",
 | |
|        "      <th>const_image_summary</th>\n",
 | |
|        "      <th>3_non-deterministic summary</th>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </thead>\n",
 | |
|        "  <tbody>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>0</th>\n",
 | |
|        "      <td>data/102730_eng.png</td>\n",
 | |
|        "      <td>two people in blue coats spray disinfection a van</td>\n",
 | |
|        "      <td>[two people in blue uniforms are spraying fire...</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>1</th>\n",
 | |
|        "      <td>data/106349S_por.png</td>\n",
 | |
|        "      <td>a man wearing a face mask while looking at a c...</td>\n",
 | |
|        "      <td>[the man is using his cellphone on tv, a tv sc...</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>2</th>\n",
 | |
|        "      <td>data/102141_2_eng.png</td>\n",
 | |
|        "      <td>a collage of images including a corona sign, a...</td>\n",
 | |
|        "      <td>[some sort of corona sign in different picture...</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </tbody>\n",
 | |
|        "</table>\n",
 | |
|        "</div>"
 | |
|       ],
 | |
|       "text/plain": [
 | |
|        "                filename                                const_image_summary  \\\n",
 | |
|        "0    data/102730_eng.png  two people in blue coats spray disinfection a van   \n",
 | |
|        "1   data/106349S_por.png  a man wearing a face mask while looking at a c...   \n",
 | |
|        "2  data/102141_2_eng.png  a collage of images including a corona sign, a...   \n",
 | |
|        "\n",
 | |
|        "                         3_non-deterministic summary  \n",
 | |
|        "0  [two people in blue uniforms are spraying fire...  \n",
 | |
|        "1  [the man is using his cellphone on tv, a tv sc...  \n",
 | |
|        "2  [some sort of corona sign in different picture...  "
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 8,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "df.head(10)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Write the csv file:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 9,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.045876Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.045452Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.050741Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.050149Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "df.to_csv(\"data_out.csv\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Manually inspect the summaries\n",
 | |
|     "\n",
 | |
|     "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n",
 | |
|     "\n",
 | |
|     "`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n",
 | |
|     "\n",
 | |
|     "`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 10,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.053337Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.053110Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.098271Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.097503Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Dash is running on http://127.0.0.1:8055/\n",
 | |
|       "\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "INFO:dash.dash:Dash is running on http://127.0.0.1:8055/\n",
 | |
|       "\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/html": [
 | |
|        "\n",
 | |
|        "        <iframe\n",
 | |
|        "            width=\"100%\"\n",
 | |
|        "            height=\"650\"\n",
 | |
|        "            src=\"http://127.0.0.1:8055/\"\n",
 | |
|        "            frameborder=\"0\"\n",
 | |
|        "            allowfullscreen\n",
 | |
|        "            \n",
 | |
|        "        ></iframe>\n",
 | |
|        "        "
 | |
|       ],
 | |
|       "text/plain": [
 | |
|        "<IPython.lib.display.IFrame at 0x7f4267dd2e80>"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
 | |
|     "analysis_explorer.run_server(port=8055)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Generate answers to free-form questions about images written in natural language. "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Set the list of questions as a list of strings:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 11,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.102528Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.101905Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.105401Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.104719Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "list_of_questions = [\n",
 | |
|     "    \"How many persons on the picture?\",\n",
 | |
|     "    \"Are there any politicians in the picture?\",\n",
 | |
|     "    \"Does the picture show something from medicine?\",\n",
 | |
|     "]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Explore the analysis using the interface:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 12,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.108316Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.107757Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:32:19.626984Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:32:19.626151Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Dash is running on http://127.0.0.1:8055/\n",
 | |
|       "\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "INFO:dash.dash:Dash is running on http://127.0.0.1:8055/\n",
 | |
|       "\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/html": [
 | |
|        "\n",
 | |
|        "        <iframe\n",
 | |
|        "            width=\"100%\"\n",
 | |
|        "            height=\"650\"\n",
 | |
|        "            src=\"http://127.0.0.1:8055/\"\n",
 | |
|        "            frameborder=\"0\"\n",
 | |
|        "            allowfullscreen\n",
 | |
|        "            \n",
 | |
|        "        ></iframe>\n",
 | |
|        "        "
 | |
|       ],
 | |
|       "text/plain": [
 | |
|        "<IPython.lib.display.IFrame at 0x7f4267ea4370>"
 | |
|       ]
 | |
|      },
 | |
|      "metadata": {},
 | |
|      "output_type": "display_data"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
 | |
|     "analysis_explorer.run_server(port=8055)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Or directly analyze for further processing\n",
 | |
|     "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 13,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:32:19.631107Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:32:19.630431Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:33:08.925968Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:33:08.925083Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  0%|          | 0.00/1.35G [00:00<?, ?B/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 8.01M/1.35G [00:00<00:23, 61.4MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  2%|▏         | 24.0M/1.35G [00:00<00:13, 106MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  3%|▎         | 37.5M/1.35G [00:00<00:11, 120MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  4%|▎         | 49.2M/1.35G [00:00<00:12, 109MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  5%|▍         | 65.0M/1.35G [00:00<00:10, 127MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  6%|▌         | 82.6M/1.35G [00:00<00:09, 145MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  7%|▋         | 102M/1.35G [00:00<00:08, 163MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  9%|▉         | 123M/1.35G [00:00<00:07, 180MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 11%|█         | 145M/1.35G [00:00<00:06, 196MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 12%|█▏        | 168M/1.35G [00:01<00:06, 210MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 14%|█▍        | 194M/1.35G [00:01<00:05, 229MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 16%|█▌        | 219M/1.35G [00:01<00:05, 238MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 18%|█▊        | 242M/1.35G [00:01<00:08, 140MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 19%|█▉        | 260M/1.35G [00:01<00:08, 146MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 21%|██        | 286M/1.35G [00:01<00:06, 174MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 22%|██▏       | 306M/1.35G [00:02<00:10, 108MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 24%|██▍       | 331M/1.35G [00:02<00:08, 135MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 26%|██▌       | 358M/1.35G [00:02<00:06, 163MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 28%|██▊       | 384M/1.35G [00:02<00:05, 188MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 30%|██▉       | 410M/1.35G [00:02<00:04, 204MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 31%|███▏      | 433M/1.35G [00:02<00:05, 178MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 33%|███▎      | 457M/1.35G [00:02<00:04, 196MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 35%|███▍      | 482M/1.35G [00:03<00:04, 211MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 37%|███▋      | 507M/1.35G [00:03<00:04, 224MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 38%|███▊      | 531M/1.35G [00:03<00:03, 231MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 40%|████      | 557M/1.35G [00:03<00:03, 243MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 42%|████▏     | 583M/1.35G [00:03<00:03, 251MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 44%|████▍     | 608M/1.35G [00:03<00:03, 240MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 46%|████▌     | 632M/1.35G [00:03<00:04, 193MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 48%|████▊     | 657M/1.35G [00:03<00:03, 209MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 49%|████▉     | 683M/1.35G [00:03<00:03, 225MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 51%|█████▏    | 708M/1.35G [00:04<00:02, 236MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 53%|█████▎    | 734M/1.35G [00:04<00:02, 246MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 55%|█████▌    | 760M/1.35G [00:04<00:02, 254MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 57%|█████▋    | 785M/1.35G [00:04<00:03, 162MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 59%|█████▊    | 809M/1.35G [00:04<00:03, 181MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 60%|██████    | 833M/1.35G [00:04<00:02, 197MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 62%|██████▏   | 858M/1.35G [00:04<00:02, 214MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 64%|██████▍   | 881M/1.35G [00:05<00:06, 81.7MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 66%|██████▌   | 904M/1.35G [00:05<00:04, 100MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 67%|██████▋   | 929M/1.35G [00:05<00:03, 125MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 69%|██████▉   | 954M/1.35G [00:05<00:03, 148MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 71%|███████   | 978M/1.35G [00:05<00:02, 170MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 73%|███████▎  | 0.98G/1.35G [00:06<00:02, 194MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 75%|███████▍  | 1.01G/1.35G [00:06<00:01, 208MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 76%|███████▋  | 1.03G/1.35G [00:06<00:01, 221MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 78%|███████▊  | 1.05G/1.35G [00:06<00:01, 231MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 80%|████████  | 1.08G/1.35G [00:06<00:01, 190MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 82%|████████▏ | 1.10G/1.35G [00:06<00:01, 207MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 84%|████████▍ | 1.13G/1.35G [00:06<00:01, 224MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 86%|████████▌ | 1.15G/1.35G [00:06<00:00, 238MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 87%|████████▋ | 1.18G/1.35G [00:07<00:00, 192MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 89%|████████▉ | 1.20G/1.35G [00:07<00:00, 209MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 91%|█████████ | 1.23G/1.35G [00:07<00:00, 222MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 93%|█████████▎| 1.25G/1.35G [00:07<00:00, 239MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 95%|█████████▌| 1.28G/1.35G [00:07<00:00, 252MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 97%|█████████▋| 1.31G/1.35G [00:07<00:00, 261MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 99%|█████████▉| 1.33G/1.35G [00:07<00:00, 268MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "100%|██████████| 1.35G/1.35G [00:07<00:00, 187MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "for key in mydict:\n",
 | |
|     "    mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Convert to dataframe and write csv\n",
 | |
|     "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 14,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:33:08.930582Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:33:08.929839Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:33:08.936874Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:33:08.936195Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "outdict2 = mutils.append_data_to_dict(mydict)\n",
 | |
|     "df2 = mutils.dump_df(outdict2)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 15,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:33:08.941341Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:33:08.940618Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:33:08.951583Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:33:08.950837Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/html": [
 | |
|        "<div>\n",
 | |
|        "<style scoped>\n",
 | |
|        "    .dataframe tbody tr th:only-of-type {\n",
 | |
|        "        vertical-align: middle;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe tbody tr th {\n",
 | |
|        "        vertical-align: top;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe thead th {\n",
 | |
|        "        text-align: right;\n",
 | |
|        "    }\n",
 | |
|        "</style>\n",
 | |
|        "<table border=\"1\" class=\"dataframe\">\n",
 | |
|        "  <thead>\n",
 | |
|        "    <tr style=\"text-align: right;\">\n",
 | |
|        "      <th></th>\n",
 | |
|        "      <th>filename</th>\n",
 | |
|        "      <th>const_image_summary</th>\n",
 | |
|        "      <th>3_non-deterministic summary</th>\n",
 | |
|        "      <th>How many persons on the picture?</th>\n",
 | |
|        "      <th>Are there any politicians in the picture?</th>\n",
 | |
|        "      <th>Does the picture show something from medicine?</th>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </thead>\n",
 | |
|        "  <tbody>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>0</th>\n",
 | |
|        "      <td>data/102730_eng.png</td>\n",
 | |
|        "      <td>two people in blue coats spray disinfection a van</td>\n",
 | |
|        "      <td>[two people in blue uniforms are spraying fire...</td>\n",
 | |
|        "      <td>2</td>\n",
 | |
|        "      <td>no</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>1</th>\n",
 | |
|        "      <td>data/106349S_por.png</td>\n",
 | |
|        "      <td>a man wearing a face mask while looking at a c...</td>\n",
 | |
|        "      <td>[the man is using his cellphone on tv, a tv sc...</td>\n",
 | |
|        "      <td>1</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>2</th>\n",
 | |
|        "      <td>data/102141_2_eng.png</td>\n",
 | |
|        "      <td>a collage of images including a corona sign, a...</td>\n",
 | |
|        "      <td>[some sort of corona sign in different picture...</td>\n",
 | |
|        "      <td>1</td>\n",
 | |
|        "      <td>no</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </tbody>\n",
 | |
|        "</table>\n",
 | |
|        "</div>"
 | |
|       ],
 | |
|       "text/plain": [
 | |
|        "                filename                                const_image_summary  \\\n",
 | |
|        "0    data/102730_eng.png  two people in blue coats spray disinfection a van   \n",
 | |
|        "1   data/106349S_por.png  a man wearing a face mask while looking at a c...   \n",
 | |
|        "2  data/102141_2_eng.png  a collage of images including a corona sign, a...   \n",
 | |
|        "\n",
 | |
|        "                         3_non-deterministic summary  \\\n",
 | |
|        "0  [two people in blue uniforms are spraying fire...   \n",
 | |
|        "1  [the man is using his cellphone on tv, a tv sc...   \n",
 | |
|        "2  [some sort of corona sign in different picture...   \n",
 | |
|        "\n",
 | |
|        "  How many persons on the picture? Are there any politicians in the picture?  \\\n",
 | |
|        "0                                2                                        no   \n",
 | |
|        "1                                1                                       yes   \n",
 | |
|        "2                                1                                        no   \n",
 | |
|        "\n",
 | |
|        "  Does the picture show something from medicine?  \n",
 | |
|        "0                                            yes  \n",
 | |
|        "1                                            yes  \n",
 | |
|        "2                                            yes  "
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 15,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "df2.head(10)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 16,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-06-13T11:33:08.954820Z",
 | |
|      "iopub.status.busy": "2023-06-13T11:33:08.954219Z",
 | |
|      "iopub.status.idle": "2023-06-13T11:33:08.959309Z",
 | |
|      "shell.execute_reply": "2023-06-13T11:33:08.958643Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "df2.to_csv(\"data_out2.csv\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.16"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 4
 | |
| }
 | 
